1,179 research outputs found

    The velocity peaks in the cold dark matter spectrum on Earth

    Full text link
    The cold dark matter spectrum on earth is expected to have peaks in velocity space. We obtain estimates for the sizes and locations of these peaks. To this end we have generalized the secondary infall model of galactic halo formation to include angular momentum of the dark matter particles. This new model is still spherically symmetric and it has self-similar solutions. Our results are relevant to direct dark matter search experiments.Comment: 12 pages including 1 table and 4 figures, LaTeX, REVTEX 3.0 versio

    Probing the evolution of early-type cluster galaxies through chemical enrichment

    Get PDF
    A simple chemical enrichment model for cluster early-type galaxies is described in which the mechanisms considered in the evolutionary model are infall of primordial gas, outflows and a possible variation in the star formation efficiency. We find that - within the framework of our models - only outflows can generate a suitable range of metallicities. The chemical enrichment tracks can be combined with the latest population synthesis models to simulate clusters over a wide redshift range, for a set of toy models. The color-magnitude relation of local clusters is used as a constraint, fixing the correlation between absolute luminosity and ejected fraction of gas from outflows. It is found that the correlations between color or mass-to-light ratios and absolute luminosity are degenerate with respect to most of the input parameters. However, a significant change between monolithic and hierarchical models is predicted for redshifts z\simgt 1. The comparison between predicted and observed mass-to-light ratios yield an approximate linear bias between total and stellar masses: MTot∝MSt1.15±0.08M_{\rm Tot}\propto M_{\rm St}^{1.15\pm 0.08} in early-type galaxies. If we assume that outflows constitute the driving mechanism for the colors observed in cluster early type galaxies, the metallicity of the intracluster medium (ICM) can be linked to outflows. The color-magnitude constraint requires faint MV∌−16M_V\sim -16 galaxies to eject 85% of their gas, which means that most of the metals in the ICM may have originated in these dwarf galaxies.Comment: Accepted for publication in ApJ. Uses emulateapj.sty. 12 pages with 10 embedded EPS figure

    Molecular Aspects of Secretory Granule Exocytosis by Neurons and Endocrine Cells

    Get PDF
    Neuronal communication and endocrine signaling are fundamental for integrating the function of tissues and cells in the body. Hormones released by endocrine cells are transported to the target cells through the circulation. By contrast, transmitter release from neurons occurs at specialized intercellular junctions, the synapses. Nevertheless, the mechanisms by which signal molecules are synthesized, stored, and eventually secreted by neurons and endocrine cells are very similar. Neurons and endocrine cells have in common two different types of secretory organelles, indicating the presence of two distinct secretory pathways. The synaptic vesicles of neurons contain excitatory or inhibitory neurotransmitters, whereas the secretory granules (also referred to as dense core vesicles, because of their electron dense content) are filled with neuropeptides and amines. In endocrine cells, peptide hormones and amines predominate in secretory granules. The function and content of vesicles, which share antigens with synaptic vesicles, are unknown for most endocrine cells. However, in B cells of the pancreatic islet, these vesicles contain GABA, which may be involved in intrainsular signaling.' Exocytosis of both synaptic vesicles and secretory granules is controlled by cytoplasmic calcium. However, the precise mechanisms of the subsequent steps, such as docking of vesicles and fusion of their membranes with the plasma membrane, are still incompletely understood. This contribution summarizes recent observations that elucidate components in neurons and endocrine cells involved in exocytosis. Emphasis is put on the intracellular aspects of the release of secretory granules that recently have been analyzed in detail

    Hydrodynamics of galactic dark matter

    Get PDF
    We consider simple hydrodynamical models of galactic dark matter in which the galactic halo is a self-gravitating and self-interacting gas that dominates the dynamics of the galaxy. Modeling this halo as a sphericaly symmetric and static perfect fluid satisfying the field equations of General Relativity, visible barionic matter can be treated as ``test particles'' in the geometry of this field. We show that the assumption of an empirical ``universal rotation curve'' that fits a wide variety of galaxies is compatible, under suitable approximations, with state variables characteristic of a non-relativistic Maxwell-Boltzmann gas that becomes an isothermal sphere in the Newtonian limit. Consistency criteria lead to a minimal bound for particle masses in the range 30eV≀m≀60eV30 \hbox{eV} \leq m \leq 60 \hbox{eV} and to a constraint between the central temperature and the particles mass. The allowed mass range includes popular supersymmetric particle candidates, such as the neutralino, axino and gravitino, as well as lighter particles (m≈m\approx keV) proposed by numerical N-body simulations associated with self-interactive CDM and WDM structure formation theories.Comment: LaTeX article style, 16 pages including three figures. Final version to appear in Classical and Quantum Gravit

    Two‐photon polymerization of sugar responsive 4D microstructures

    Get PDF
    Stimuli-responsive hydrogels have attracted much attention owing to the versatility of their programmed response in offering intelligent solutions for biomimicry applications, such as soft robotics, tissue engineering, and drug delivery. To achieve the complexity of biomimetic structures, two photon polymerization (2PP) has provided a means of fabricating intricate 3D structures from stimuli-responsive hydrogels. Rapid swelling hydrogel microstructures are advantageous for osmotically driven stimuli-response, where actuation speed, that is reliant on the diffusion of analytes or bioanalytes, can be optimized. Herein, the flexibility of 2PP is exploited to showcase a novel sugar-responsive, phenylboronic acid-based photoresist. This offers a remarkable solution for achieving fast response hydrogel systems that have been often hindered by the volume-dependent diffusion times of analytes to receptor sites. A phenylboronic acid-based photoresist compatible with 2PP is presented to fabricate stimuli-responsive microstructures with accelerated response times. Moreover, microstructures with programmable actuation (i.e., bending and opening) are fabricated using the same photoresist within a one-step fabrication process. By combining the flexibility of 2PP with an easily adaptable photoresist, an accessible fabrication method is showcased for sophisticated and chemo-responsive 3D hydrogel actuators

    Contamination Control and Assay Results for the Majorana Demonstrator Ultra Clean Components

    Full text link
    The MAJORANA DEMONSTRATOR is a neutrinoless double beta decay experiment utilizing enriched Ge-76 detectors in 2 separate modules inside of a common solid shield at the Sanford Underground Research Facility. The DEMONSTRATOR has utilized world leading assay sensitivities to develop clean materials and processes for producing ultra-pure copper and plastic components. This experiment is now operating, and initial data provide new insights into the success of cleaning and processing. Post production copper assays after the completion of Module 1 showed an increase in U and Th contamination in finished parts compared to starting bulk material. A revised cleaning method and additional round of surface contamination studies prior to Module 2 construction have provided evidence that more rigorous process control can reduce surface contamination. This article describes the assay results and discuss further studies to take advantage of assay capabilities for the purpose of maintaining ultra clean fabrication and process design.Comment: Proceedings of Low Radioactivity Techniques (LRT May 2017, Seoul
    • 

    corecore