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I. INTRODUCTION 

In this paper, we continue our work in [9] on the univalence of derivatives 
of functions defined by gap power series. We consider regular functions, f, 
defined in some region containing 0, and denote by pn and pJc> the radius of 
univalence and the radius of convexity, respectively, off@). For ease of 
notation, we shall sometimes write pn = p(n). 

Earlier, we considered functions defined by power series with gaps of at 
least a certain length. By that we meant the following: Suppose F(z) = 
Cj”=, Aizj. Then F is defined by a power series with gaps at least of length K 
provided that K is a nonnegative integer such that, if A, # 0 for some n, 
then Ancj = 0 for 1 < j < K. We proved the following [9]. 

THEOREM A. There is a strictly-increasing sequence, {x~}& , of positive 
numbers with the following properties: Let f be dejined in a disc about 0 by a 
power series with gaps at least of length k - 1 and with a radius of convergence, 
R > 0. Assume that f is not a polynomial. Then 

IfR==a, then 

Further, 

Rx, < liy+zup np, . 

x,/6 < liT+$up pn . 

(k! log 2)ri” < xk < (k!)liL. 

28 
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UNIVALENCE OF GAP POWER SERIES 29 

Here, S = lim inf,,, v(r)/r, where V(Y) is the central index off. This result 
extends theorems of G. A. Read and V. G. Iyer (see [9]). 

In this paper, we investigate functions with gaps no greater than a certain 
length. By this, we mean the following: Let 

where {hj}TEO is a strictly-increasing sequence of nonnegative integers and 
where uj # 0 for all j. Let 

k = li~+~up(xj, - hi). 

Then we say that f is defined by a power series with gaps no greater than 
k - 1. If k = co, we mean that f is defined by a power series with unbounded 
gaps. (Actually, if k < co, such an f may have gaps greater than k - 1; but 
only a finite number of these gaps can occur. We note also that in the earlier 
definition of “gaps at least of length k”, it would have been possible to use 
the requirement that k + 1 < lim infj,,Jhj+r - h,), where f would now be 
defined by (1 .l). Theorem A would remain unchanged.) 

If f is defined by (l.l), we define 

If R is the radius of convergence of the power series defining f, then 
Jj < R < R [2, p. 4221. 

We prove the following theorems: 

THEOREM 1. Let f be defined by (1.1) and have gaps no greater than k - 1. 
Then, for each integer k such that 1 < k < co, 

yKR < limstp np, < (1 + Q) (k!)l/” i?, (1.4 

where {Y~}:=~ is a strictly-increasing sequence such that 

(.58k!)ll’” < yk: < (.6568k!)llL 

for k > 2, and where {+}& is a nonincreasing sequence of positive numbers 
,such that lim,,, k - l - 0. Further, neither {ylc}~z’=l my {+$zl depends on f. 
If k = CO and a > 0, then lim SUP~+~ np, = 00. 

THEOREM 2. Let f, k, {y&??l , and {E~}:?+~ be as in Theorem 1. Suppose 
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that {I ajlaj+l I ll(Aj+l-Aj)}jm_l is ultimately nondecreasing and tends to co. Then f 
is entire. If k < co, then 

YJY < liF+yp pn < (1 + 4 (WW. (1.3) 

If k = co and f is of exponential type, then lim SUP+~ pn = 00. Here, 6 is as 
in Theorem A and y = lim SUP~+~ v(Y)/Y. 

THEOREM 3. Let f be dejined by 

f(z) = f a,P (A) 
Tb=O 

and have radius of convergence, R, where 0 < R < 00. Suppose that 
lim,,, 1 an/a,+, 1 exists. Then 

and 

lim sup np, < 2 d3 R 
n-tm (1.4) 

THEOREM 4. Let f, as defined by (A), be entire, and suppose that 

Let 

Then 

and 

(1.6) 

(1.7) 

(1.8) 

CORoLL~y. If {I 4an+l IL is ultimately a nondecreasing sequence, then 

(1.9) 
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and 

(1.10) 

Remarks. (i) Theorem 4 improves the corresponding results of Theorem 
3 in [8]. The hypothesis (1.6) is less restrictive than the hypothesis there. 
Further, the numerical constants in the conclusion of Theorem 4 are better. 
The bounds in (1.7) involve the coefficients off and not the growth-measuring 
constants, y and 6, which are related to the rank. 

(ii) Suppose that f is entire. Let T = lim supr,, log M(Y)/Y and 
t = lim inf,-,W log M(Y)/Y. Then S < t and T < y < eT [7]. Further, if 
6 > 0, t < S(l + log r/s) [7]. This allows us to put (1.3) in terms of t and T 
if we desire. 

(iii) Theorems 1 and 2 give better results, for power series with “sparse” 
gaps, than our earlier work. For example, let 

f(Z) = 1 + x + *** + $ + $ + ... + $ + ,l;ala;;,, + . . . 

9 $of+j 

+ & + (lOi +jy + *-. . 

Then f is of order 1 and type 1 ( see [I, p. 1 I]). Further, y = 6 = 1. The 
results in [9] do not apply at all to f, and the results in [8] show only that 
log 2 < lim SUP~+~ pn . However, Theorem 2 shows that lim SUP~+~ pn = co. 

2. PROOFS 

The proofs of Theorems 1 and 2 require some lemmas. 

LEMMA 1. There is a unique, strictly-increasing sequence, {yk}& , of 
positive numbers with the following properties: 

( 1) For each k, 

1 = ,r;. $. (2.1) . 

Further, 

F+z ykk/k! = 1 - l/e. (2.2) 

(2) Let k be a positive integer. If {Am)zE1 is a strictly-increasing sequence 

409/56/1-3 
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of positive integers, then there is a unique, strictly-increasing sequence, {J~,,~,,~.~~~ , 
of positive numbers with the following properties: 

(A) 1 _ f (L + k +“v Y9n.k 
( 1 

lci-’ 
,=o L!(k +jy h, . 

P) & ~m.lc = ok . 

Proof. Let 

Then & is defined for all x, & is strictly-increasing for x > 0, #fi(O) = 0, 

lim,,, Cd4 = ~0, and Ail(x) < &(x) f or x > 0. It follows that there is a 
unique, strictly-increasing sequence, {yk}Fzl , of positive numbers that 
satisfy (2.1). 

It is immediate that yrc” < k! Hence, 

on, using this and the first remark, 

1-2L<YtS<l 
k k! * (2.3) 

Recalling that Stirling’s formula implies that (k!)‘/” N k/e, we conclude that 

lj+m y,/k = l/e. (2.4) 

If n is a positive integer, then 

‘>$-[’ +&+--+(k+l)(,&)...(,$+n) 1 ’ 
From this and (2.4), it follows that 

l> 1+1+... 
( e + f) l$%up $$, 

or, 

(1 - f)/(l - &) > liy+%up $$. 

This, (2.4), and (2.3) imply (2.2). 
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Now let k be a positive integer, and suppose that {h,}E=l is a strictly- 
increasing sequence of positive integers. Let 

$m*k(X) = -f AZ + k +“o x k+i 
A,! (k + j)! x, i 1 . 

j=O 

Note that, if 0 < x < A, , then $m,k can be rewritten as 

Aa(X) = (1 _ !$+1 - z (h;m~jf! (G)j. (2.5) 

From these two expressions, it follows that $m,k is strictly-increasing on 
[0, A,), $,,&O) = 0, and lim,,,mn-+,,k(X) = co. Hence, there is a unique 
positive number ym,k , in (0, A,) such that $&,&ym,k) = 1. 

Since, 

(L + k + j)! 
Am! A;+Lfj 

= (1 +;j (1 t-k) *me (1 +F), 
nl m 

it follows that, if 0 < x < A,, then &+&x) <$,&x). This means that 
Ym+l,k > ylll,k . Clearly, 

(hn + V k k < 1 
( 1 A,! k! A, ’ 

or, 

Ym,k < VW’” [,;f$& 1 
l/k 

< (k!)‘l”. 

Hence, lim,,, ym,s exists. Call it yk’, From (2.5), it follows that 

+0(1/h ) 
WL- 

Noting that 

lim (h, +‘)! = 1 

m+m A,! Ami ’ 

it follows that 

yk’ = log k-1 (yk’)j 1 + c - . 
+=O j! 1 
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This is equivalent to &(v,,,‘) = I. Hence, yk’ == y,; . The lemma is proved. 
Numerical estimates on the J,~ are given in the third section. 

LEMMA 2. Let f be defined b-v (I .I) and suppose that {I ajjujy.l ‘l!(*ij+l ,‘J’,!,:~, 
is ultirnute~ nondecreasing. Then 

y =I lim sup XJ aila,,, 11’(Aj+1-A9) 
.I += 

and 

The proof of this is essentially the same as that given in [6, p. 85, #148] 
and so is omitted. The proof of the next lemma is in [3, p. 4941. 

LEMMA 3. Let f(z) 7: z f ukxh + u,+,&l + ... . Suppose that f is 
univalent in 1 x I < 1. Then 1 uk 1 < 2/(k - 1). 

LEMMA 4. Let f(z) = z + u+z2 $- ‘.. . Suppose that x,“=zj 1 uj / < 1. 
Then f is univalent in I x j < I. 

A proof of this is in [4]. 

Proof of Theorem 1. Suppose k < CO. For m 3 1, let 

F&4 = 
f (Am-l)(zp(hm - 1)) - f (+1)(o) 

P&n - l)f ‘A+o) 

L+J 
z + hn! (L+1 i I 

a,,, h&l - l)]nm+l-nm+l i ,. . 
--Ax, + l)! a, PbL--) ’ . 

Then FV, is univalent in D. From Lemma 3, we have that 

A ’ n&+1- 

U(L+, - L + I)! I I 
a,,l p(A,& - l)A,+l-h, < h 2 

a, 
_ h . 

m+1 m 

Since 

it follows that 

(,“‘I 

l/La m+1-&J 
.--2zL 1 

1 
m+l’ <x,+1’ 

(L + l)P(hn - 1) < [2 (1 + Am+ly A, j &I+, - LY 12 Al”. 
V-6) 
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Hence, 

liy+ypnp, < Wli1;t2y [2 (1 + A 
1 
--h )(h+l 

rnfl nl 

Let b, = [n!2(1 + l/n)] lln. Then it can be shown that (bn}Ez=2 is strictly 
increasing, that b, = 4, and that b, < 4 < b, . Using these facts, we have that 

Let 

d<8 

“‘(,&!)l/kR, d>,8 

k<8 
k>8’ (2.7) 

Then the right side of (1.2) is established. 
Now we establish the left side, If B = 0, there is nothing to prove. So, 

suppose B > 0 and let 0 < r < &. Then 

or, 

for all large m. An induction argument shows that, for all large m and all 
j 3 m, 

1 aj 125 < 1 a, 1 YAW. W) 

Let nz be such that (2.8) holds and that h,+l - Am = k. Let yna,7C be as in 
Lemma 1. Then 

hj! 
(Xj - A, + l)! 

aj ( yk y+l/ 

< r 1 a, 1 ym.k f bn + k t-j>! 
\ 

hIa j=. (k +A! 
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Hence, if 

=f-)(o) + ,z:, (x. _ x”j! + *), ($ (q!&jA~-nm+l, 
3 m m 

it follows from Lemma 4 that F is univalent in D. So, 

~YnL.RIL ,< P&n - 1). (2.9) 

Using Lemma 1 again, 

ry, < lim sup np, . 
n-Ku (2.10) 

Letting r + &, we get the left side of (1.2). 
Finally, suppose that k = co and B > 0. Note that (2.9) still holds for all 

large m when k is replaced in it by a positive integer < h,+r - A, . Since 

limm+m(L+l - A,) = 00, (2.10) is true for arbitrarily large k. The last 
statement in Theorem 1 follows from this and the fact that lim,,, y, = co. 
The rest of Theorem 1 will be established in Section 3. 

Proof of Theorem 2. Since B < R < f7 and since & = co, f is certainly 
entire. Suppose k < co. From (2.6), we have that, for m > 1, 

p(& - 1) < [2 (1 + x l- x 
m+1 m 

) (A,,, - X,)!]l’(h”+l-Am) 

Using Lemma 2, the right side of (1.3) now follows in the same way as the 
right side of (1.2). 

Let h,+l - h, = k and let r = / a,/~,+, jl/(Am+l--Am). From (2.8) we have 

ym& 1 a&,+, p,++m) 
A G P(hn - 1). 

m 

The left side of (1.3) follows from this, Lemma 2, and the technique used to 
establish the left side of (1.2). 

The case k = co is treated the same way as it was in the proof of Theorem 1. 

LEMMA 5. Let f (z) = x + u2z2 + a,z3 + ... . Iffis univalent in 1 z j ( 1, 
then ~u~~-u~/ <I. If f also maps 1 z 1 < 1 onto a convex set, then 
I u22 - a3 I < (1 - I a2 12Y3. 
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The first part of the conclusion is well-known. A proof of the second part 
in [lo]. 

Proof of Theorem 3. From the hypotheses, it follows that fn > 0 for all 
large n. Let 

jp,) = f Yw4 - f Y0) 
P .f (n+lYO) 

n + 2 an+2 =z+-- 
2 a,,, pnz2 + 

(n + 2) (n + 3) an+3 - *** 6 p,%3 f . 
4l+1 

Since F is univalent in 1 z 1 < 1, Lemma 5 shows that 

I( 
n + 2 an+2 
2a,,lPn 1 

2 _ (n + 2)(n + 3) an+3 &2 

6 an+, 
< 1 (2.11) 

Using the triangle inequality, this becomes 

Using the hypothesis, it follows that 

or, 

Let G be defined like F except let fn be replaced by pn(c). Then G maps 
1 x 1 < 1 onto a convex set. Using the second part of Lemma 5 and proceeding 
as above, it follows that lim SUP+,~ q,(c) < 1/ZR. 

Proof of Theorem 4. The hypothesis implies that pn > 0 for all large n. 
Define F as in the proof of Theorem 3 and note that (2.11) remains true. 
Using the triangle inequality, we have that 

Using (1.6), it follows that 

~i~+-q$n + 2) 1 z 1 pn]’ < 12. 
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Using the fact that, if {p,Jzzl and {~~}nm_r are sequences of positive numbers, 
then (lim supnAm plz) (lim inf,,, Q~) < lim SUP~~-~ p,q, , both parts of (1.7) 
now follow. 

The proof of (1.8) follows from this in the same way that the proof of (1.5) 
followed from the proof of (1.4). The proof of the corollary is immediate 
because, under the assumptions of the corollary, 6 = 6” and y = y”. 

Remark. The constant, 22/3, on the right-hand side of (1.4) cannot be 
replaced by any number smaller than r, and the constant, d/z on the right- 
hand side of (1.5) cannot be replaced by any number smaller than 1. This is 
shown by z/(1 - x), for which pn = sin r/(n + 1) and ,o~(c) = l/(n + 1). 

3. NUMERICAL ESTIMATES ON (yk}& 

The sequence, (Y~}:=~ , is defined by either 

(3.1) 

or 

Using (3.1), Table I was compiled. 

TABLE I 

1 log 2 .6931 . . . 

2 1.1461 . . . .6567.. . 

3 1.5681 . . . .6426... 

4 1.9761., . .6353.. . 

5 2.3761 . . . .6311.. . 

6 2.7709. . . .6286. . . 

7 3.1619. . . .6269. . . 

We also note that [5, p. 1841, fork > 2, 

[2vrk]1/2 (;,” li elll2k. (3.3) 
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From (3.2), we have that 

l<$[l+ky --i + (&)” + -1 

1 =- 
lGk 1 -y&k + 1) 1 I * 

Hence, 

1 - y&k + 1) < y,Q”/k! 

Using (3.3) and the fact that yK < (k!)l/“, we have that 

(3.4) 

For k > 2, the right-hand side of this inequality is a decreasing function of k. 
Ifk>& 

k;l< 
8( 16~r)~/~s t.Wg2 < 42 

9e ” 

Using this in (3.4), yr” > Sk! Using (3.3) again, 

yle .> k( .58)1.‘k (2rrk)1/2k 
k+l* ++I) ’ 

The right-hand side of this inequality is decreasing for k > 8. Using Table I, 
it follows that, for k 3 2, 

L&k- 1.1415 
e k+I<-i-* 

Finally, using (3.2) again, we have for k > 8, 

l > $ b + %$-i + (k + $k + 2) + (k + 1) (kyt32) (k + 2) 1 

>yLB 
[ 
1 +l+lkS-l (k + lj2 

k! e e2 k+Z ’ ik (k + 2) (k + 3) 1 
>Ykk 1+1+-9+ 8.1 
’ k! ( e e2 

-) > $ (1.5263). 

Hence, for k >, 8, ylc” < .6552k! Using Table I, it follows that for k > 2, 

.58 <yk”/k! < .6568. 
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