16 research outputs found

    Cyanobacterial chemical warfare alters zooplankton commuinty composition

    No full text
    1) Toxic algal blooms widely affect our use of water resources both with respect to drinking water and recreation. However, it is not only humans, but also organisms living in freshwater and marine ecosystems, that may be affected by algal toxins. 2) In order to assess if cyanobacterial toxins affect the composition of natural zooplankton communities, we quantified the temporal fluctuations in microcystin concentration and zooplankton community composition in six lakes. 3) Microcystin concentrations generally showed a bimodal pattern with peaks in early summer and in autumn, and total zooplankton biomass was negatively correlated with microcystin concentrations. Separating the zooplankton assemblages into finer taxonomic groups revealed that high microcystin concentrations were negatively correlated with Daphnia and calanoid copepods, but positively correlated with small, relatively inefficient phytoplankton feeders such as cyclopoid copepods, Bosmina and rotifers. 4) In a complementary, mechanistic laboratory experiment using the natural phytoplankton communities from the six lakes, we showed that changes in in situ levels of microcystin were coupled with reduced adult size and diminished juvenile biomass in Daphnia. 5) We argue that in eutrophic lakes, large unselective herbivores, such as Daphnia, are ”sandwiched” between high fish predation and toxic food (cyanobacteria). In combination, these two mechanisms may explain why the zooplankton community in eutrophic lakes is generally comprised of small forms (e.g. rotifers and Bosmina) and selective raptorial feeders, such as cyclopoid copepods, whereas large, unselective herbivores, such as Daphnia, are rare. Hence, this cyanobacterial chemical warfare against herbivores may add to our knowledge on population and community dynamics among zooplankton in eutrophic systems

    Frame:for soprano sax, bass clarinet and tape

    Get PDF
    1. In eutrophic lakes, large amounts of the cyanobacterium Microcystis may overwinter in the sediment and re-inoculate the water column in spring. 2. We monitored changes in pelagic and benthic populations of Microcystis in Lake Volkerak, The Netherlands. In addition, sedimentation rates and the rate of recruitment from the sediment were measured using traps. These data were used to model the coupling between the benthic and pelagic populations and to calculate the contribution of overwintering benthic and pelagic populations to the magnitude of the pelagic summer bloom. 3. Changes in the benthic Microcystis population showed a time lag of 314 weeks compared with the pelagic population. This time lag increased with lake depth. The largest amount of benthic Microcystis was found in the deepest parts of the lake. These observations suggest horizontal transport of sedimented Microcystis from shallow to deep parts of the lake. 4. Recruitment from and sedimentation to the sediment occurred throughout the year, with highest recruitment and sedimentation rates during summer. Model simulations indicate that the absence of benthic recruitment would reduce the summer bloom by 50%. 5. In spring, the total pelagic population was three to six times smaller than the total benthic population. Yet, model simulations predict that the absence of this small overwintering pelagic population would reduce the summer bloom by more than 64%. 6. Reduction of the overwintering pelagic populations, for instance by flushing, may be a useful management strategy to suppress or at least delay summer blooms of Microcystis. [KEYWORDS: harmful algae ; Microcystis ; model ; population dynamics ; recruitment ; sedimentation]

    Phytoplankton equilibrium phases during thermal stratification in a deep subtropical reservoir

    No full text
    1. Equilibrium and non-equilibrium hypotheses have often been used to explain observations in community ecology. Published case studies have demonstrated that steady state phytoplankton assemblages are more likely to occur in deep lakes than in shallow mixed ones. 2. Phytoplankton seasonal succession was studied by weekly sampling in Faxinal Reservoir (S Brazil), a subtropical deep, clear, warm monomictic and slightly eutrophic reservoir. This study demonstrated an alternation of steady and non-steady state phases of phytoplankton assemblages with different dominant species during the steady states. 3. During the studied period, three steady states were identified with different dominant algal species: Anabaena crassa (Cyanobacteria), Nephrocytium sp. (green algae) and Asterionella (diatoms). 4. Each steady state in Faxinal Reservoir developed under stratified conditions of the water column according to the predictions of the disturbance concepts. Apparently, the major forces driving the development and persistence of these steady-state phases were closely related to thermal stratification and its consequences. 5. This study is the first report on development of more than one steady state within a year in a stratified water body. The development of three steady states might be the result of the relatively long stratification period in the Faxinal Reservoir and to its unique geochemical features

    The impact of year-to-year changes in the weather on the dynamics of Daphnia in a thermally stratified lake

    No full text
    The factors influencing the seasonal dynamics of Daphnia in a thermally stratified lake (Esthwaite Water) are described and related to long-term changes in the weather. The Daphnia produced three cohorts in the year and the strength of the cohorts was determined by year-to-year variations in the physical characteristics of the lake and the abundance of edible algae. Food was most abundant in early summer when small, fast-growing flagellates were particularly common. In late summer, the phytoplankton community was dominated by large, inedible species but edible forms re-appeared when nutrients were entrained by wind mixing. Examples are presented to demonstrate the effect that year-to-year variations in the weather have on the growth of the phytoplankton and the dynamics of the Daphnia. In ‘good’ years, when the lake stratifies early and there are periods of episodic mixing in summer, there are two ‘pulses’ of edible algae and two strong cohorts of Daphnia. In ‘bad’ years when stratification is delayed and there is little episodic mixing, the growth of the edible algae is suppressed and the Daphnia produce two weak cohorts. The results are discussed in relation to the impact of intermediate disturbances on growth of phytoplankton and current theories of population regulation in Daphnia. The evidence suggests that the dynamics of the Daphnia in the lake are strongly influenced by seasonal variations in the mixing regime, the recycling of nutrients and the episodic growth of edible alga
    corecore