808 research outputs found

    Phenomenological model for a novel melt-freeze phase of sliding bilayers

    Full text link
    Simulations show that sliding bilayers of colloidal particles can exhibit a new phase, the ``melt-freeze'' phase, where the layers stochastically alternate between solidlike and liquidlike states. We introduce a mean field phenomenological model with two order parameters to understand the interplay of two adjacent layers while the system is in this remarkable phase. Predictions from our numerical simulations of a system in the melt-freeze phase include the tendency of two adjacent layers to be in opposite states (solid and liquid) and the difference between the fluctuation of the order parameter in one layer while the other layer is in the same phase compared to the fluctuation while the other layer is in the opposite phase. We expect this behavior to be seen in future simulations and experiments.Comment: 6 Pages, 6 figure

    VLSI single-chip (255,223) Reed-Solomon encoder with interleaver

    Get PDF
    The invention relates to a concatenated Reed-Solomon/convolutional encoding system consisting of a Reed-Solomon outer code and a convolutional inner code for downlink telemetry in space missions, and more particularly to a Reed-Solomon encoder with programmable interleaving of the information symbols and code correction symbols to combat error bursts in the Viterbi decoder

    Mechanism for nonequilibrium symmetry breaking and pattern formation in magnetic films

    Full text link
    Magnetic thin films exhibit a strong variation in properties depending on their degree of disorder. Recent coherent x-ray speckle experiments on magnetic films have measured the loss of correlation between configurations at opposite fields and at the same field, upon repeated field cycling. We perform finite temperature numerical simulations on these systems that provide a comprehensive explanation for the experimental results. The simulations demonstrate, in accordance with experiments, that the memory of configurations increases with film disorder. We find that non-trivial microscopic differences exist between the zero field spin configuration obtained by starting from a large positive field and the zero field configuration starting at a large negative field. This seemingly paradoxical beahvior is due to the nature of the vector spin dynamics and is also seen in the experiments. For low disorder, there is an instability which causes the spontaneous growth of line-like domains at a critical field, also in accord with experiments. It is this unstable growth, which is highly sensitive to thermal noise, that is responsible for the small correlation between patterns under repeated cycling. The domain patterns, hysteresis loops, and memory properties of our simulated systems match remarkably well with the real experimental systems.Comment: 12 pages, 10 figures Added comparison of results with cond-mat/0412461 and some more discussio

    Hysteresis multicycles in nanomagnet arrays

    Full text link
    We predict two new physical effects in arrays of single-domain nanomagnets by performing simulations using a realistic model Hamiltonian and physical parameters. First, we find hysteretic multicycles for such nanomagnets. The simulation uses continuous spin dynamics through the Landau-Lifshitz-Gilbert (LLG) equation. In some regions of parameter space, the probability of finding a multicycle is as high as ~0.6. We find that systems with larger and more anisotropic nanomagnets tend to display more multicycles. This result demonstrates the importance of disorder and frustration for multicycle behavior. We also show that there is a fundamental difference between the more realistic vector LLG equation and scalar models of hysteresis, such as Ising models. In the latter case, spin and external field inversion symmetry is obeyed but in the former it is destroyed by the dynamics, with important experimental implications.Comment: 7 pages, 2 figure

    Design and construction of a remote piloted flying wing

    Get PDF
    Currently, there is a need for a high-speed, high-lift civilian transport. Although unconventional, a flying wing could fly at speeds in excess of Mach 2 and still retain the capacity of a 747. The design of the flying wing is inherently unstable since it lacks a fuselage and a horizontal tail. The project goal was to design, construct, fly, and test a remote-piloted scale model flying wing. The project was completed as part of the NASA/USRA Advanced Aeronautics Design Program. These unique restrictions required us to implement several fundamental design changes from last year's Elang configuration including wing sweepback and wingtip endplates. Unique features such as a single ducted fan engine, composite structural materials, and an electrostatic stability system were incorporated. The result is the Banshee '94. Our efforts will aid future projects in design and construction techniques so that a viable flying wing can become an integral part of the aviation industry

    Architecture for time or transform domain decoding of reed-solomon codes

    Get PDF
    Two pipeline (255,233) RS decoders, one a time domain decoder and the other a transform domain decoder, use the same first part to develop an errata locator polynomial .tau.(x), and an errata evaluator polynominal A(x). Both the time domain decoder and transform domain decoder have a modified GCD that uses an input multiplexer and an output demultiplexer to reduce the number of GCD cells required. The time domain decoder uses a Chien search and polynomial evaluator on the GCD outputs .tau.(x) and A(x), for the final decoding steps, while the transform domain decoder uses a transform error pattern algorithm operating on .tau.(x) and the initial syndrome computation S(x), followed by an inverse transform algorithm in sequence for the final decoding steps prior to adding the received RS coded message to produce a decoded output message

    Sanitation value chains in low density settings in Indonesia and Vietnam: Impetus for a rethink to achieve pro-poor outcomes

    Full text link
    © 2017 The Authors. This study examined the sanitation hardware supply chain in rural, low density settings in Indonesia and Vietnam. Actual costs along the chains were investigated to understand the challenges and opportunities to support affordable sanitation in remote, rural locations. Data were collected from four remote districts in Indonesia and Vietnam through a systematic value-chain analysis comprising 378 interviews across households and supply chain actors and both quantitative and qualitative analysis. Three main findings are presented. Firstly, poor households, often located in remote areas and with lower sanitation access, often experienced higher costs to build durable latrines than households in accessible areas or district capitals. Second, locally sourced materials (sand, bricks or gravel) had a greater influence on price than externally sourced materials (cement, steel and toilet pans), even accounting for cost increases of these materials along the supply chain. Thirdly, transport and labour costs represented considerable proportions of the overall cost to build a toilet. These findings highlighted logistical and financial barriers to poor, remote households in accessing sanitation. Findings can inform strategies to improve the availability and affordability of sanitation products and services, in particular key issues that need to be addressed through government and non-government pro-poor market-based interventions

    What do we know about the diets of Aboriginal and Torres Strait Islander peoples in Australia? A systematic literature review.

    Full text link
    OBJECTIVE: To provide an overview of published research on the dietary intake of Aboriginal and Torres Strait Islander peoples. METHODS: Peer-reviewed literature from 1990 to October 2016 was searched to identify studies that measured the dietary intake of Australian Aboriginal and Torres Strait Islander populations. Study quality was assessed using a purposely devised quality appraisal tool. Meta-analysis was not possible due to the heterogeneity in dietary intake assessment methods. A narrative synthesis of study findings, where key themes were compared and contrasted was completed. RESULTS: Twenty-five articles from twenty studies with outcome measures related to dietary intake were included. Dietary intake was assessed by electronic store sales, store turnover method, 24-hour dietary recall, food frequency questionnaire and short questions. Consistent findings were low reported intakes of fruit and vegetables and high intakes of total sugar and energy-dense, nutrient-poor food and beverages. CONCLUSIONS: While differences between studies and study quality limit the generalisability of the findings, most studies suggest that the diets of Aboriginal and Torres Strait Islander peoples are inadequate. Implications for public health: A more concerted approach to understanding dietary patterns of Aboriginal and Torres Strait Islander peoples is required to inform policy and practice to improve diet and nutrition

    Development of a Compact, Pulsed, 2-Micron, Coherent-Detection, Doppler Wind Lidar Transceiver; and Plans for Flights on NASA's DC-8 and WB-57 Aircraft

    Get PDF
    We present results of a recently completed effort to design, fabricate, and demonstrate a compact lidar transceiver for coherent-detection lidar profiling of winds. The novel high-energy, 2-micron, Ho:Tm:LuLiF laser technology developed at NASA Langley was employed to permit study of the laser technology currently envisioned by NASA for global coherent Doppler lidar measurement of winds in the future. The 250 mJ, 10 Hz compact transceiver was also designed for future aircraft flight. Ground-based wind profiles made with this transceiver will be presented. NASA Langley is currently funded to build complete Doppler lidar systems using this transceiver for the DC-8 and WB-57 aircraft. The WB-57 flights will present a more severe environment and will require autonomous operation of the lidar system. The DC-8 lidar system is a likely component of future NASA hurricane research. It will include real-time data processing and display, as well as full data archiving. We will attempt to co-fly on both aircraft with a direct-detection Doppler wind lidar system being prepared by NASA Goddard Space Flight Center

    High Repetition Rate Pulsed 2-Micron Laser Transmitter for Coherent CO2 DIAL Measurement

    Get PDF
    A high repetition rate, highly efficient, Q-switched 2-micron laser system as the transmitter of a coherent differential absorption lidar for CO2 measurement has been developed at NASA Langley Research Center. Such a laser transmitter is a master-slave laser system. The master laser operates in a single frequency, either on-line or off-line of a selected CO2 absorption line. The slave laser is a Q-switched ring-cavity Ho:YLF laser which is pumped by a Tm:fiber laser. The repetition rate can be adjusted from a few hundred Hz to 10 kHz. The injection seeding success rate is from 99.4% to 99.95%. For 1 kHz operation, the output pulse energy is 5.5mJ with the pulse length of approximately 50 ns. The optical-to-optical efficiency is 39% when the pump power is 14.5W. The measured standard deviation of the laser frequency jitter is about 3 MHz
    • …
    corecore