21 research outputs found

    Formation of "Chemically Pure" Magnetite from Mg-Fe-Carbonates Implications for the Exclusively Inorganic Origin of Magnetite and Sulfides in Martian Meteorite ALH84001

    Get PDF
    Magnetite and sulfides in the black rims of carbonate globules in Martian meteorite ALH84001 have been studied extensively because of the claim by McKay et al. that they are biogenic in origin. However, exclusively inorganic (abiotic) processes are able to account for the occurrence of carbonate-sulfide-magnetite assemblages in the meteorite. We have previously precipitated chemically zoned and sulfide-bearing carbonate globules analogous to those in ALH84001 (at less than or equal to 150 C) from multiple fluxes of variable-composition Ca-Mg-Fe-CO2-S-H2O solutions. Brief heating of precipitated globules to approx. 470 C produced magnetite and pyrrhotite within the globules by thermal decomposition of siderite and pyrite, respectively. We have also shown that morphology of magnetite formed by inorganic thermal decomposition of Fe-rich carbonate is similar to the morphology of so-called biogenic magnetite in the carbonate globules of ALH84001. Magnetite crystals in the rims of carbonate globules in ALH84001 are chemically pure [Note: "Chemically pure" is defined here as magnetite with Mg at levels comparable or lower than Mg detected by [8] in ALH84001 magnetite]. A debate continues on whether or not chemically pure magnetite can form by the thermal decomposition of mixed Mg-Fe-carbonates that have formed under abiotic conditions. Thomas-Keprta et al. argue that it is not possible to form Mg-free magnetite from Mg-Fe-carbonate based on thermodynamic data. We previously suggested that chemically pure magnetite could form by the thermal decomposition of relatively pure siderite in the outer rims of the globules. Mg-Fe-carbonates may also thermally decompose under conditions conducive for formation of chemically pure magnetite. In this paper we show through laboratory experiments that chemically pure magnetite can form by an inorganic process from mixed Mg-Fe-carbonates

    Fermion Zero Modes in Odd Dimensions

    Full text link
    We study the zero modes of the Abelian Dirac operator in any odd dimension. We use the stereographic projection between a (2n1)(2n-1) dimensional space and a (2n1)(2n-1) sphere embedded in a 2n2n dimensional space. It is shown that the Dirac operator with a gauge field of uniform field strengths in S2n1S^{2n-1} has symmetries of SU(nn)×\timesU(1) which is a subgroup of SO(2n2n). Using group representation theory, we obtain the number of fermion zero modes, as well as their explicit forms, in a simple way.Comment: 14 page

    Quality of Longer Term Mental Health Facilities in Europe: Validation of the Quality Indicator for Rehabilitative Care against Service Users’ Views

    Get PDF
    BACKGROUND: The Quality Indicator for Rehabilitative Care (QuIRC) is a staff rated, international toolkit that assesses care in longer term hospital and community based mental health facilities. The QuIRC was developed from review of the international literature, an international Delphi exercise with over 400 service users, practitioners, carers and advocates from ten European countries at different stages of deinstitutionalisation, and review of the care standards in these countries. It can be completed in under an hour by the facility manager and has robust content validity, acceptability and inter-rater reliability. In this study, we investigated the internal validity of the QuIRC. Our aim was to identify the QuIRC domains of care that independently predicted better service user experiences of care. METHOD: At least 20 units providing longer term care for adults with severe mental illness were recruited in each of ten European countries. Service users completed standardised measures of their experiences of care, quality of life, autonomy and the unit's therapeutic milieu. Unit managers completed the QuIRC. Multilevel modelling allowed analysis of associations between service user ratings as dependent variables with unit QuIRC domain ratings as independent variables. RESULTS: 1750/2495 (70%) users and the managers of 213 units from across ten European countries participated. QuIRC ratings were positively associated with service users' autonomy and experiences of care. Associations between QuIRC ratings and service users' ratings of their quality of life and the unit's therapeutic milieu were explained by service user characteristics (age, diagnosis and functioning). A hypothetical 10% increase in QuIRC rating resulted in a clinically meaningful improvement in autonomy. CONCLUSIONS: Ratings of the quality of longer term mental health facilities made by service managers were positively associated with service users' autonomy and experiences of care. Interventions that improve quality of care in these settings may promote service users' autonomy

    Mineralogy and Elemental Composition of Wind Drift Soil at Rocknest, Gale Crater

    Get PDF
    The Mars Science Laboratory rover Curiosity has been exploring Mars since August 5, 2012, conducting engineering and first-time activities with its mobility system, arm, sample acquisition and processing system (SA/SPaH-CHIMRA) and science instruments. Curiosity spent 54 sols at a location named "Rocknest," collecting and processing five scoops of loose, unconsolidated materials ("soil") acquired from an aeolian bedform (Fig. 1). The Chemistry and Mineralogy (CheMin) instrument analyzed portions of scoops 3, 4, and 5, to obtain the first quantitative mineralogical analysis of Mars soil, and to provide context for Sample Analysis at Mars (SAM) measurements of volatiles, isotopes and possible organic materials

    Geochemical diversity and K-rich compositions found by the MSL APXS in Gale Crater, Mars

    Get PDF
    Along the Curiosity rover’s traverse toward Glenelg (through sol 102) the Alpha Particle X-ray Spectrometer (APXS) analysed four rocks and one soil. Microscopic images and compositions of unbrushed rock surfaces are consistent with 5-20% dust contamination. Nevertheless, the underlying characteristics of these rocks may still be discerned. As a group, they span nearly the entire range in FeO^* and MnO of the Martian dataset. In addition, they are particularly enriched in volatile metals (K, Zn, Ge), and these elements do not correlate with Cl or S. One rock, Jake_Matijevic is notably alkaline and evolved; its composition is that of a nepheline normative mugearite. The other three rocks plot in the basanite field of a TAS diagram, with high K_2O (up to 3.0%) and low SiO_2. These three rocks are otherwise SNC-like (high Fe and low Al). Three out of the four rocks (including Jake_Matijevic) plot along a line in variation diagrams, suggesting mixing of Fe-rich and Al-rich components, likely by sedimentary processes. With only four rocks analyzed so far and ambiguity as to their geologic context (e.g. outcrop vs. float; igneous vs. sedimentary) additional measurements are needed to fully understand the region. It is nevertheless clear that Curiosity landed in a lithologically diverse, K-rich region of Mars
    corecore