3,646 research outputs found

    Reciprocity relation for the vector radiative transport equation and its application to diffuse optical tomography with polarized light

    Full text link
    We derive a reciprocity relation for vector radiative transport equation (vRTE) that describes propagation of polarized light in multiple-scattering media. We then show how this result, together with translational invariance of a plane-parallel sample, can be used to compute efficiently the sensitivity kernel of diffuse optical tomography (DOT) by Monte Carlo simulations. Numerical examples of polarization-selective sensitivity kernels thus computed are given.Comment: 5 pages, 3 figure

    NNLO Logarithmic Expansions and Precise Determinations of the Neutral Currents near the Z Resonance at the LHC: The Drell-Yan case

    Get PDF
    We present a comparative study of the invariant mass and rapidity distributions in Drell-Yan lepton pair production, with particular emphasis on the role played by the QCD evolution. We focus our study around the Z resonance (50<Q<20050 <Q < 200 GeV) and perform a general analysis of the factorization/renormalization scale dependence of the cross sections, with the two scales included both in the evolution and in the hard scatterings. We also present the variations of the cross sections due to the errors on the parton distributions (pdf's) and an analysis of the corresponding KK-factors. Predictions from several sets of pdf's, evolved by MRST and Alekhin are compared with those generated using \textsc{Candia}, a NNLO evolution program that implements the theory of the logarithmic expansions, developed in a previous work. These expansions allow to select truncated solutions of varying accuracy using the method of the xx-space iterates. The evolved parton distributions are in good agreement with other approaches. The study can be generalized for high precision searches of extra neutral gauge interactions at the LHC.Comment: 75 pages,30 figures, 30 table

    Eco-friendly biosynthesis, anticancer drug loading and cytotoxic effect of capped ag-nanoparticles against breast cancer

    Full text link
    © The Author(s) 2017. The work aimed to prepare silver nanoparticles (Ag-NPs) from silver nitrate and various concentrations of the seed extract (Setaria verticillata) by a green synthetic route. The chemical and physical properties of the resulting Ag-NPs were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectrometry and ultraviolet–visible (UV–Vis) spectrophotometry. Anticancer activity of Ag-NPs (5–20 nm) had dose-dependent cytotoxic effect against breast cancer (MCF7-FLV) cells. The in vitro toxicity was studied on adult earthworms (Lumbricina) resulting in statistically significant (P < 0.05) inhibition. The prepared NPs were loaded with hydrophilic anticancer drugs (ACD), doxorubicin (DOX) and daunorubicin (DNR), for developing a novel drug delivery carrier having significant adsorption capacity and efficiency to remove the side effects of the medicines effective for leukemia chemotherapy

    Size-selected agglomerates of SnOâ‚‚ nanoparticles as gas sensors

    No full text
    The effect of nanoparticle structure on gas sensing performance is investigated. Size-selected nanostructured SnO₂ agglomerate particles for gas sensors were made by scalable flame spray pyrolysis. These particles were polydisperse (up to 12μm in diameter) and consisted of primary particles of 10nm in grain and crystal size as measured by transmission electron microscopy, x-ray diffraction, and Berner low pressure impactor (BLPI). The effect of agglomerate size on thermal stability and sensing of ethanol vapor (4–100ppm) and CO (4–50ppm) was investigated by selecting nearly monodisperse fractions of these agglomerates by the BLPI. Sensor layers made with these size-fractionated agglomerates exhibited higher thermal stability and dramatically enhanced sensitivity for both analytes than layers made with polydisperse agglomerates. This is attributed to their aggregate (or hard agglomerate) structure exhibiting small sinter necks between their constituent primary particles of tin dioxide that had also a narrow size distribution as expected for particles generated in flames. Upon further sintering of these optimally sized, nanostructured agglomerates, grain and neck growth degraded their superior sensitivity, supporting the proposed mechanism of their enhanced sensitivity: optimal primary particle necking.Financial support was provided by ETH Zurich FEL-04 08-3, Finnish Academy, Tekes The Finnish National Technology Agency, and Nanoprim

    Detection of VOCs Traces by Graphene Oxide-Metal Oxide Gas Sensors

    Get PDF
    The sensing of gas molecules is of fundamental importance for environmental monitoring, control of chemical processes, medical applications, and so on [1-3]. In recent years, graphene-based gas sensors have attracted much attention due to enhanced graphene thermo-electric conductivity, surface area and mechanical strength. Thus, different structures have been developed and high sensing performances and room temperature working conditions were achieved [2,4]. However, they still suffer from several problems, which could be overcome by covering the graphene surface with metal oxide nanoparticles [2]. Furthermore, studies regarding the detection of Volatile Organic Compounds (VOCs) are still at the beginning [3]. Hence, the present work will be aimed at: i) optimizing the synthetic routes of ad hoc composite VOCs sensing materials (based on graphene oxide/SnO2 or ZnO hybrids) and their deep physico-chemical characterizations; ii) engineering the gas sensor device; and iii) evaluating the sensing performances at both high and mild temperatures (also exploiting the UV light) towards gaseous ethanol, acetone and ethylbenzene. Starting from pure graphite, graphene oxide (GO) powder was synthesized by adopting the Hummer\u2019s modified method [5]. The synthetic route was deeply investigated by modulating both the starting carbon material (powder or flakes graphite) and the concentration of the H2O2 (i.e. the quenching/oxidizing agent), thus tailoring the final GO surface/structural properties (TEM images in Fig. 1a and 1b). Once optimized this step, SnO2 or ZnO were grown on its surface by a hydrothermal method, varying the starting salt precursor/GO weight ratio between 4 and 32 (Fig. 1c and 1d). For comparison, pure SnO2 and ZnO (both commercial and home-made) were also tested. Several physico-chemical techniques have been used to characterize all the as-prepared nanopowders, such as XRPD, Raman, FTIR, XPS and TEM analyses. Subsequently, a homogeneous layer was deposited by spraying technique onto Pt-Interdigitated Electrodes (IDEs) starting from an ethanol suspension of each sample (2.0\u20132.5 mg mL-1). Then, gaseous ethanol, acetone and the less studied ethylbenzene were sensed, obtaining very promising results (in terms of both response/recovery time and sensibility down to ppb levels) for either pure and hybrid materials at 350\ub0C, and at lower temperatures (150\ub0C to 30\ub0C) for the graphene-based samples. Hence, these powders may represent very potential candidates for the gas sensing of highly toxic VOCs traces, both for environmental [1] and medical [3] diagnosis purposes

    Graphene Oxide-Based Hybrids for Chemiresistive VOCs Sensors

    Get PDF
    INTRODUCTION The sensing of gas molecules is of primary importance for environmental monitoring, control of chemical processes, medical applications, and so on1. In recent years, graphene-based gas sensors have attracted much attention due to enhanced graphene thermo-electric conductivity, surface area and mechanical strength. Thus, different structures have been developed and high sensing performances and room temperature working conditions were achieved1. However, they still suffer from several problems, which could be overcome by covering the graphene surface with metal oxide nanoparticles2. Furthermore, studies regarding the detection of Volatile Organic Compounds (VOCs) are still at the beginning1. Hence, the present work will be aimed at: i) optimizing the synthetic routes of ad hoc composite VOCs sensing materials (based on graphene oxide/SnO2 or ZnO hybrids) and their deep physico-chemical characterizations; ii) engineering the gas sensor device; and iii) evaluating the sensing performances at both high and mild temperatures (also exploiting the UV light) towards gaseous ethanol, acetone and ethylbenzene. EXPERIMENTAL/THEORETICAL STUDY Starting from pure graphite, graphene oxide (GO) powder was synthesized by adopting the Hummer\u2019s modified method2. The synthetic route was deeply investigated by modulating both the starting carbon material (powder or flakes graphite) and the concentration of the H2O2 (i.e. the quenching/oxidizing agent), thus tailoring the final GO surface/structural properties. Once optimized this step, SnO2 or ZnO were grown on its surface by a hydrothermal method, varying the starting salt precursor/GO weight ratio (ZnxGO or SnxGO, x = 4, 8, 16, 32). For comparison, pure SnO2 and ZnO (both commercial and home-made) were also tested. Several physico-chemical techniques have been used to characterize all the as-prepared nanopowders, such as XRPD, BET, Raman, FTIR, XPS, TEM and electrochemical analyses (CV and EIS). Subsequently, a homogeneous layer was deposited by spraying technique onto Pt-Interdigitated Electrodes (IDEs) starting from an ethanol suspension of each sample (2.5 mg mL-1). Then, gaseous ethanol, acetone and ethylbenzene (the more interesting one, being nowadays the less studied VOC) were sensed by using a Linkam Scientific stage, equipped with an electrochemical workstation for the chronoamperometric measurements. RESULTS AND DISCUSSION The effective synthesis of graphene oxide sheets and, subsequently, the growth of metal oxide nanoparticles on its surface were confirmed by exploiting different physico-chemical techniques. As concerns the VOCs sensing analyses, we obtained very promising results (in terms of both response/recovery time and sensibility down to ppb levels) for either pure and hybrid materials at 350\ub0C, and at lower temperatures (150\ub0C to RT, by exploiting UV light) for the graphene-based samples (Figure 1), thanks to the presence of the carbon material.Furthermore, a similar behavior has been noticed towards acetone and ethylbenzene pollutants. CONCLUSION Very promising results have been obtained with graphene oxide-based materials, which reveal to be more performing than the corresponding pure samples. Hence, these powders may represent very potential candidates for the gas sensing of highly toxic VOCs traces, both for environmental and medical diagnosis1 purposes

    An electrochemical outlook upon the gaseous ethanol sensing by graphene oxide-SnO2 hybrid materials

    Get PDF
    Breakthroughs in the synthesis of hybrid materials have led to the development of a plethora of chemiresistors that could operate at lower and lower temperatures. Herein, we report the fabrication of novel composite ma- terials (SnO2-GO 4:1, 8:1 and 16:1) based on graphene oxide (GO) sheets decorated with tin dioxide nano- particles, through a controlled chemical growth. We succeeded in obtaining widely spaced isles of the metal oxide on the carbonaceous material, thus enhancing the electron transfer process (i.e. favored convergent dif- fusion, as investigated through cyclic voltammetric analysis), which plays a pivotal role for the final sensing behavior. Indeed, only with SnO2-GO 16:1 sample, superior responses towards gaseous ethanol were observed both at 150 \ub0C and at RT (by exploiting the UV light), with respect to pristine SnO2 and mechanically prepared SnO2(16)@GO material. Particularly, an improvement of the sensitivity (down to 10 ppb), response and recovery times (about of 60\u201370 s) was assessed. Besides, all the powders were finely characterized on structural (XRPD, FTIR and Raman spectroscopies), surface (active surface area, pores volume, XPS), morphological (SEM, TEM) and electrochemical (cyclic voltammetries) points of view, confirming the effective growth of SnO2 nano- particles on the GO sheets

    Characterization of Listeria monocytogenes Strains Isolated in Palermo (Sicily and Italy) during the Years 2018–2020 from Severe Cases of Listeriosis

    Get PDF
    Listeria monocytogenes (LM), the etiological agent of listeriosis, can cause foodborne zoonosis. In this study, we characterized 23 strains that caused human severe listeriosis in Palermo (Sicily, Italy) during the period of 2018-2020. In addition, we assessed the phenotypic susceptibility of clinical isolates to antibiotics in accordance with EUCAST guidelines. The serogroup was determined through the use of PCR, while MLST and MVLST were identified through the sequencing of housekeeping genes. Finally, susceptibility to antibiotics was assessed by means of the Phoenix automatic system. Patients hospitalized with listeriosis were predominantly males (56% vs. 44% of females). The cases not associated with pregnancy included patients &gt;65 years of age (60%), two of whom were affected by cancer, while cases associated with pregnancy included two pregnant women and three preterm infants. The data collected showed that the main pathologies shown by patients were meningitis (60.9%) and bacteremia (39.1%). The LM strains were isolated from the blood (52%), cerebrospinal fluid (26%), cerebrospinal fluid + blood (13%), blood + a nasal swab (4%), and ascitic fluid (4%). The predominant serogroup was IVb (96%), whereas only one strain belonged to serogroup IIa (4%). Among the strains with serotypes 4b, 4d, and 4e, ST2/VT21 (92%) and ST6/VT19 (4%) were determined, while only isolates with serotypes 1/2a and3a show ST155/VT45 (CC155). This study reveals the widespread circulation of a clinical strain (ST2/VT21) associated with suspected food contamination, demonstrating the importance of carrying out molecular epidemiological surveillance. Our clinical isolates were susceptible to the beta-lactams assayed, in agreement with the literature data
    • …
    corecore