32 research outputs found

    Evaluating aminophylline and progesterone combination treatment to modulate contractility and labor‐related proteins in pregnant human myometrial tissues

    Get PDF
    Progesterone (P4) and cyclic adenosine monophosphate (cAMP) are regarded as pro-quiescent factors that suppress uterine contractions during pregnancy. We previously used human primary cells in vitro and mice in vivo to demonstrate that simultaneously enhancing myometrial P4 and cAMP levels may reduce inflammation-associated preterm labor. Here, we assessed whether aminophylline (Ami; phosphodiesterase inhibitor) and P4 can reduce myometrial contractility and contraction-associated proteins (CAPs) better together than individually; both agents are clinically used drugs. Myometrial tissues from pregnant non-laboring women were treated ex vivo with Ami acutely (while spontaneous contracting) or throughout 24-h tissue culture (±P4); isometric tension measurements, PKA assays, and Western blotting were used to assess tissue contractility, cAMP action, and inflammation. Acute (1 h) treatment with 250 and 750 μM Ami reduced contractions by 50% and 84%, respectively, which was not associated with a directly proportional increase in whole tissue PKA activity. Sustained myometrial relaxation was observed during 24-h tissue culture with 750 μM Ami, which did not require P4 nor reduce CAPs. COX-2 protein can be reduced by 300 nM P4 but this did not equate to myometrial relaxation. Ami (250 μM) and P4 (100 and 300 nM) co-treatment did not prevent oxytocin-augmented contractions nor reduce CAPs during interleukin-1β stimulation. Overall, Ami and P4 co-treatment did not suppress myometrial contractions more than either agent alone, which may be attributed to low specificity and efficacy of Ami; cAMP and P4 action at in utero neighboring reproductive tissues during pregnancy should also be considered

    The interaction between protein kinase A and progesterone on basal and inflammation-induced myometrial oxytocin receptor expression

    Get PDF
    Our previous work has shown myometrial PKA activity declines in term and twin-preterm labour in association with an increase in the expression of the oxytocin receptor (OTR). Here we investigate the action of cAMP/PKA in basal conditions, with the addition of progesterone (P4) and/or IL-1β to understand how cAMP/PKA acts to maintain pregnancy and whether the combination of cAMP and P4 would be a viable therapeutic combination for the prevention of preterm labour (PTL). Further, given that we have previously found that cAMP enhances P4 action we wanted to test the hypothesis that changes in the cAMP effector system are responsible for the functional withdrawal of myometrial P4 action. Myometrial cells were grown from biopsies obtained from women at the time of elective Caesarean section before the onset of labour. The addition of forskolin, an adenylyl cyclase activator, repressed basal OTR mRNA levels at all doses and P4 only enhanced this effect at its highest dose. Forskolin repressed the IL-1β-induced increase in OTR mRNA and protein levels in a PKA-dependent fashion and repressed IL-1β-activation and nuclear transfer of NFκB and AP-1. P4 had similar effects and the combination P4 and forskolin had greater effects on OTR and NFκB than forskolin alone. While PKA knockdown had no effect on the ability of P4 to repress IL-1β-induced OTR expression it reversed the repressive effect of the combination of P4 and forskolin and resulted in a greater increase than observed with IL-1β alone. These studies suggest that cAMP acts via PKA to repress inflammation-driven OTR expression, but that when PKA activity is reduced, the combination of cAMP and P4 actually enhances the OTR response to inflammation, promoting the onset of labour and suggesting that changes in the cAMP effector system can induce a functional P4 withdrawal

    Changes in cAMP effector predominance are associated with increased oxytocin receptor expression in twin but not infection-associated or idiopathic preterm labour

    Get PDF
    We previously reported that at term pregnancy, a decline in myometrial protein kinase A (PKA) activity leads to an exchange protein activated by cyclic AMP (Epac1)-dependent increase in oxytocin receptor (OTR) expression, promoting the onset of labour. Here, we studied the changes in the cyclic adenosine monophosphate (cAMP) effector system present in different phenotypes of preterm labour (PTL). Myometrial biopsies obtained from women with phenotypically distinct forms of PTL and the levels of PKA and OTR were examined. Although we found similar changes in the cAMP effector pathway in all forms of PTL, only in the case of twin PTL (T-PTL) was myometrial OTR levels increased in association with these results. Although there were several changes in the mRNA levels of components of the cAMP synthetic pathway, the total myometrial cAMP levels did not change with the onset of any subtype of PTL. With regards to the expression of cAMP-responsive genes, we found that the mRNA levels of 4 of the 5 cAMP-down-regulated genes were increased in T-PTL, similar to our findings in term labour. These data signify that although changes in the cAMP effector system were common to all forms of PTL, only in T-PTL were OTR levels increased. Similarly, the mRNA levels of cAMP-repressed genes were only increased in T-PTL supporting the concept that the decline in PKA levels influences myometrial function driving the onset of T-PTL

    The impact of progesterone and RU-486 on classic pro-labour proteins & contractility in human myometrial tissues during 24-hour exposure to tension & Interleukin-1β

    No full text
    Increased expression of pro-labour genes that encode cyclooxygenase-2 (COX-2), oxytocin receptor (OTR) and connexin-43 (Cx43) at parturition is often attributed to P4 functional withdrawal, based on findings from animal models and human primary myometrial cells. However, the cause of reduced myometrial P4 responsiveness that promotes contractions at labour is not fully determined. Uterine stretch occurs with advancing gestation but most in vitro experimental models do not take this into consideration. We aimed to examine whether tissue-level myometrial stretch influences the ability of P4 to regulate pro-labour protein abundance by using myometrial biopsies from term gestation pregnant women to assess the impact of 24 h exposure to combinations of (i) stretch-mediated tension, (ii) P4 (100 nM) and (iii) an anti-progestin, RU-486 (1 μM). Firstly, we observed baseline COX-2 and Cx43 protein levels increased, whereas P4 content along with calponin-1 and progesterone receptor (PR) protein abundance decreased, in vehicle-treated tissues. P4 supplementation subtly reduced COX-2 levels in un-stretched tissues. Spontaneous and oxytocin-augmented contractility were unchanged by tissue culture exposure to P4 and/or RU-486. Interleukin-1β (IL-1β; 1 ng/ml) enhanced COX-2 protein and PGE2 content in un-stretched tissues. Overall, tissue stretch may, in part, regulate P4-sensitive pro-labour protein levels, but this is likely to be reliant on interaction with other in utero factors that were absent in our tissue cultures. More complex culture conditions should be evaluated in future to aid further development of a physiologically relevant model to improve our understanding of in utero myometrial P4 responsiveness

    Transcription factors regulated by cAMP in smooth muscle of the myometrium at human parturition.

    No full text
    Cyclic adenosine monophosphate (cAMP) contributes to maintenance of a quiescent (relaxed) state in the myometrium (i.e. uterine smooth muscle) during pregnancy, which most commonly has been attributed to activation of protein kinase A (PKA). PKA-mediated phosphorylation of cytosolic contractile apparatus components in myometrial smooth muscle cells (mSMCs) are known to promote relaxation. Additionally, PKA also regulates nuclear transcription factor (TF) activity to control expression of genes important to the labour process; these are mostly involved in actin-myosin interactions, cell-to-cell connectivity and inflammation, all of which influence mSMC transition from a quiescent to a contractile (pro-labour) phenotype. This review focuses on the evidence that cAMP modulates the activity of TFs linked to pro-labour gene expression, predominantly cAMP response element (CRE) binding TFs, nuclear factor κB (NF-κB), activator protein 1 (AP-1) family and progesterone receptors (PRs). This review also considers the more recently described exchange protein directly activated by cAMP (EPAC) that may oppose the pro-quiescent effects of PKA, as well as explores findings from other cell types that have the potential to be of novel relevance to cAMP action on TF function in the myometrium

    Realism and analysis within public law

    Get PDF
    Allan, Loughlin and Walker represent leading theorists within the realm of public law analysis. Accordingly, when such theorists write on a similar topic, such as that of the theory of constitutionalism, it can be assumed that their analysis and evaluation of the theory represents a ‘realistic’ account. However, close examination of their writings does not reveal similarity but instead much divergence, even incompatibility. This then raises the question, how can such diversity represent reality? If all three theorists are examining the same phenomenon then surely there must be some similarity between their accounts for there to be reality? Alternatively, if all the perceptions of the theorists are indeed real, then perhaps it is the way that public lawyers represent reality that needs to be examined
    corecore