1,418 research outputs found

    Construction of weakly CUD sequences for MCMC sampling

    Full text link
    In Markov chain Monte Carlo (MCMC) sampling considerable thought goes into constructing random transitions. But those transitions are almost always driven by a simulated IID sequence. Recently it has been shown that replacing an IID sequence by a weakly completely uniformly distributed (WCUD) sequence leads to consistent estimation in finite state spaces. Unfortunately, few WCUD sequences are known. This paper gives general methods for proving that a sequence is WCUD, shows that some specific sequences are WCUD, and shows that certain operations on WCUD sequences yield new WCUD sequences. A numerical example on a 42 dimensional continuous Gibbs sampler found that some WCUD inputs sequences produced variance reductions ranging from tens to hundreds for posterior means of the parameters, compared to IID inputs.Comment: Published in at http://dx.doi.org/10.1214/07-EJS162 the Electronic Journal of Statistics (http://www.i-journals.org/ejs/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Global analysis of muon decay measurements

    Get PDF
    We have performed a global analysis of muon decay measurements to establish model-independent limits on the space-time structure of the muon decay matrix element. We find limits on the scalar, vector and tensor coupling of right- and left-handed muons to right- and left-handed electrons. The limits on those terms that involve the decay of right-handed muons to left-handed electrons are more restrictive than in previous global analyses, while the limits on the other non-standard model interactions are comparable. The value of the Michel parameter eta found in the global analysis is -0.0036 \pm 0.0069, slightly more precise than the value found in a more restrictive analysis of a recent measurement. This has implications for the Fermi coupling constant G_F.Comment: 5 pages, 3 table

    Lambda hyperonic effect on the normal driplines

    Full text link
    A generalized mass formula is used to calculate the neutron and proton drip lines of normal and lambda hypernuclei treating non-strange and strange nuclei on the same footing. Calculations suggest existence of several bound hypernuclei whose normal cores are unbound. Addition of Lambda or, Lambda-Lambda hyperon(s) to a normal nucleus is found to cause shifts of the neutron and proton driplines from their conventional limits.Comment: 6 pages, 4 tables, 0 figur

    Milk production and related performance factors in sows

    Get PDF
    Digitized 2007 AES.Includes bibliographical references (pages 25-26)

    Inheritance of nipple numbers in swine and the relationship to performance

    Get PDF
    This bulletin is a report of research under Project 3, 'Improvement of swine through breeding,' Department of Animal Husbandry in cooperation with the Regional Swine Breeding Laboratory, A.H.R.D., A.R.S., U.S. Department of Agriculture--P. [2].Digitized 2007 AES.Includes bibliographical references (page 16)

    Thermal conduction and particle transport in strong MHD turbulence, with application to galaxy-cluster plasmas

    Full text link
    We investigate field-line separation in strong MHD turbulence analytically and with direct numerical simulations. We find that in the static-magnetic-field approximation the thermal conductivity in galaxy clusters is reduced by a factor of about 5-10 relative to the Spitzer thermal conductivity of a non-magnetized plasma. We also estimate how the thermal conductivity would be affected by efficient turbulent resistivity.Comment: Major revision: higher resolution simulations lead to significantly different conclusions. 26 pages, 10 figure

    Magnetic Field Evolution in Merging Clusters of Galaxies

    Get PDF
    We present initial results from the first 3-dimensional numerical magnetohydrodynamical (MHD) simulations of magnetic field evolution in merging clusters of galaxies. Within the framework of idealized initial conditions similar to our previous work, we look at the gasdynamics and the magnetic field evolution during a major merger event in order to examine the suggestion that shocks and turbulence generated during a cluster/subcluster merger can produce magnetic field amplification and relativistic particle acceleration and, as such, may play a role in the formation and evolution of cluster-wide radio halos. The ICM, as represented by the equations of ideal MHD, is evolved self-consistently within a changing gravitational potential defined largely by the collisionless dark matter component represented by an N-body particle distribution. The MHD equations are solved by the Eulerian, finite-difference code, ZEUS. The particles are evolved by a standard particle-mesh (PM) code. We find significant evolution of the magnetic field structure and strength during two distinct epochs of the merger evolution.Comment: 21 pages, 7 figures, Figure 2 is color postscript. Accepted for publication in Ap

    Extreme alpha-clustering in the 18O nucleus

    Get PDF
    The structure of the 18O nucleus at excitation energies above the alpha decay threshold was studied using 14C+alpha resonance elastic scattering. A number of states with large alpha reduced widths have been observed, indicating that the alpha-cluster degree of freedom plays an important role in this N not equal Z nucleus. However, the alpha-cluster structure of this nucleus is very different from the relatively simple pattern of strong alpha-cluster quasi-rotational bands in the neighboring 16O and 20Ne nuclei. A 0+ state with an alpha reduced width exceeding the single particle limit was identified at an excitation energy of 9.9+/-0.3 MeV. We discuss evidence that states of this kind are common in light nuclei and give possible explanations of this feature.Comment: 4 pages, 2 figures, 1 table. Resubmission with minor changes for clarity, including removal of one figur
    • …
    corecore