33 research outputs found

    Trackways Produced by Lungfish During Terrestrial Locomotion

    Get PDF
    Some primarily aquatic vertebrates make brief forays onto land, creating traces as they do. A lack of studies on aquatic trackmakers raises the possibility that such traces may be ignored or misidentified in the fossil record. Several terrestrial Actinopterygian and Sarcopterygian species have previously been proposed as possible models for ancestral tetrapod locomotion, despite extant fishes being quite distinct from Devonian fishes, both morphologically and phylogenetically. Although locomotion has been well-studied in some of these taxa, trackway production has not. We recorded terrestrial locomotion of a 35 cm African lungfish (Protopterus annectens; Dipnoi: Sarcopterygii) on compliant sediment. Terrestrial movement in the lungfish is accomplished by planting the head and then pivoting the trunk. Impressions are formed where the head impacts the substrate, while the body and fins produce few traces. The head leaves a series of alternating left-right impressions, where each impact can appear as two separate semi-circular impressions created by the upper and lower jaws, bearing some similarity to fossil traces interpreted as footprints. Further studies of trackways of extant terrestrial fishes are necessary to understand the behavioural repertoire that may be represented in the fossil track record

    Dedication: Nigel Trewin (1944–2017)

    No full text

    Deposition, diagenesis and structures of the Cheese Bay Shrimp bed, Lower Carboniferous, East Lothian.

    No full text
    The laminated dolomites and mudstones of this Lower Carboniferous succession near Edinburgh are interpreted as the deposits of a thermally stratified fresh-water lake or brackish lagoon in which clastic/organic laminites accumulated. Drainage in the area was probably disrupted by contemporary volcanicity, and seismic shocks to the sediment resulted in mobilization and intrusion of tuffaceous material and produced a variety of pull-apart, fold, fault and sediment injection structures. Intense diagenetic dolomitization has affected the strata, replacing almost all detrital material and altering depositional textures.-R.A.H

    History and contemporary significance of the Rhynie cherts—our earliest preserved terrestrial ecosystem

    No full text
    The Rhynie cherts Unit is a 407 million-year old geological site in Scotland that preserves the most ancient known land plant ecosystem, including associated animals, fungi, algae and bacteria. The quality of preservation is astonishing, and the initial description of several plants 100 years ago had a huge impact on botany. Subsequent discoveries provided unparalleled insights into early life on land. These include the earliest records of plant life cycles and fungal symbioses, the nature of soil microorganisms and the diversity of arthropods. Today the Rhynie chert (here including the Rhynie and Windyfield cherts) takes on new relevance, especially in relation to advances in the fields of developmental genetics and Earth systems science. New methods and analytical techniques also contribute to a better understanding of the environment and its organisms. Key discoveries are reviewed, focusing on the geology of the site, the organisms and the palaeoenvironments. The plants and their symbionts are of particular relevance to understanding the early evolution of the plant life cycle and the origins of fundamental organs and tissue systems. The Rhynie chert provides remarkable insights into the structure and interactions of early terrestrial communities, and it has a significant role to play in developing our understanding of their broader impact on Earth systems
    corecore