28 research outputs found

    Photovoltaic Performance of Ultrasmall PbSe Quantum Dots

    Get PDF
    We investigated the effect of PbSe quantum dot size on the performance of Schottky solar cells made in an ITO/PEDOT/PbSe/aluminum structure, varying the PbSe nanoparticle diameter from 1 to 3 nm. In this highly confined regime, we find that the larger particle bandgap can lead to higher open-circuit voltages (~0.6 V), and thus an increase in overall efficiency compared to previously reported devices of this structure. To carry out this study, we modified existing synthesis methods to obtain ultrasmall PbSe nanocrystals with diameters as small as 1 nm, where the nanocrystal size is controlled by adjusting the growth temperature. As expected, we find that photocurrent decreases with size due to reduced absorption and increased recombination, but we also find that the open-circuit voltage begins to decrease for particles with diameters smaller than 2 nm, most likely due to reduced collection efficiency. Owing to this effect, we find peak performance for devices made with PbSe dots with a first exciton energy of ~1.6 eV (2.3 nm diameter), with a typical efficiency of 3.5%, and a champion device efficiency of 4.57%. Comparing the external quantum efficiency of our devices to an optical model reveals that the photocurrent is also strongly affected by the coherent interference in the thin film due to Fabry-Pérot cavity modes within the PbSe layer. Our results demonstrate that even in this simple device architecture, fine-tuning of the nanoparticle size can lead to substantial improvements in efficiency

    A global map of mangrove forest soil carbon at 30 m spatial resolution

    Full text link
    With the growing recognition that effective action on climate change will require a combination of emissions reductions and carbon sequestration, protecting, enhancing and restoring natural carbon sinks have become political priorities. Mangrove forests are considered some of the most carbon-dense ecosystems in the world with most of the carbon stored in the soil. In order for mangrove forests to be included in climate mitigation efforts, knowledge of the spatial distribution of mangrove soil carbon stocks are critical. Current global estimates do not capture enough of the finer scale variability that would be required to inform local decisions on siting protection and restoration projects. To close this knowledge gap, we have compiled a large georeferenced database of mangrove soil carbon measurements and developed a novel machine-learning based statistical model of the distribution of carbon density using spatially comprehensive data at a 30 m resolution. This model, which included a prior estimate of soil carbon from the global SoilGrids 250 m model, was able to capture 63% of the vertical and horizontal variability in soil organic carbon density (RMSE of 10.9 kg m−3). Of the local variables, total suspended sediment load and Landsat imagery were the most important variable explaining soil carbon density. Projecting this model across the global mangrove forest distribution for the year 2000 yielded an estimate of 6.4 Pg C for the top meter of soil with an 86–729 Mg C ha−1 range across all pixels. By utilizing remotely-sensed mangrove forest cover change data, loss of soil carbon due to mangrove habitat loss between 2000 and 2015 was 30–122 Tg C with >75% of this loss attributable to Indonesia, Malaysia and Myanmar. The resulting map products from this work are intended to serve nations seeking to include mangrove habitats in payment-for- ecosystem services projects and in designing effective mangrove conservation strategies

    Disease stage-specific atrophy markers in Alzheimer's disease

    Get PDF
    INTRODUCTION: Structural magnetic resonance imaging (MRI) often lacks diagnostic, prognostic, and monitoring value in Alzheimer's disease (AD), particularly in early disease stages. To improve its utility, we aimed to identify optimal atrophy markers for different intended uses. METHODS: We included 363 older adults; cognitively unimpaired individuals who were negative or positive for amyloid beta (Aβ) and Aβ-positive patients with subjective cognitive decline, mild cognitive impairment, or dementia of the Alzheimer type. MRI and neuropsychological assessments were administered annually for up to 3 years. RESULTS: Accelerated atrophy of medial temporal lobe subregions was evident already during preclinical AD. Symptomatic disease stages most notably differed in their hippocampal and parietal atrophy signatures. Atrophy-cognition relationships varied by intended use and disease stage. DISCUSSION: With the appropriate marker, MRI can detect abnormal atrophy already during preclinical AD. To optimize performance, atrophy markers should be tailored to the targeted disease stage and intended use. HIGHLIGHTS: Subregional atrophy markers detect ongoing atrophy in preclinical Alzheimer's disease (AD). Subjective cognitive decline in preclinical AD links to manifest atrophy. Optimal atrophy markers differ by the disease stage and intended use

    Dealloying of Cobalt from CuCo Nanoparticles under Syngas Exposure

    Full text link
    International audienceThe structure and composition of core−shell CuCo nanoparticles were found to change as a result of cleaning pretreatments and when exposed to syngas (CO + H 2) at atmospheric pressure. In situ X-ray absorption and photoelectron spectroscopies revealed the oxidation state of the particles as well as the presence of adsorbates under syngas. Transmission electron microscopy was used for ex situ analysis of the shape, elemental composition, and structure after reaction. The original core−shell structure was found to change to a hollow CuCo alloy after pretreatment by oxidation in pure O 2 and reduction in pure H 2. After 30 min of exposure to syngas, a significant fraction (5%) of the particles was strongly depleted in cobalt giving copper-rich nanoparticles. This fraction increased with duration of syngas exposure, a phenomenon that did not occur under pure CO or pure H 2. This study suggests that Co and Cu can each individually contribute to syngas conversion with CuCo catalysts

    Colloid chemistry of nanocatalysts: A molecular view

    No full text
    Recent advances of a colloidal chemistry can offer great opportunities to fabricate and design nanocatalysts. Comprehensive understanding of a basic concept and theory of the colloidal synthetic chemistry facilitates to engineer elaborate nano-architectures such as bi- or multi-metallic, heterodimers, and core/shell. This colloidal solution technique not only enables to synthesize high surface mesoporous materials, but also provides a versatile tool to incorporate nanoparticles into mesoporous materials or onto substrates. For green chemistry, catalysis research has been pursued to design and fabricate a catalyst system that produces only one desired product (100% selectivity) at high turnover rates to reduce the production of undesirable wastes. Recent studies have shown that several molecular factors such as the surface structures, composition, and oxidation states affect the turnover frequency and reaction selectivity depending on the size, morphology, and composition of metal nanoparticles. Multipath reactions have been utilized to study the reaction selectivity as a function of size and shape of platinum nanoparticles. In the past, catalysts were evaluated and compared with characterizations before and after catalytic reaction. Much progress on in situ surface characterization techniques has permitted real-time monitoring of working catalysts under various conditions and provides molecular information during the reaction. © 2011 Elsevier Inc..close323
    corecore