11 research outputs found

    Lamb Production of Targhee Range Ewes Mated to Suffolk vs. Targhee Rams

    Get PDF
    Production data on a flock straightbred Targhee ewes mated to Targhee or Suffolk rams were collected during the years of 1971 through 1975. the mean lambing percent was 93.35. The average number of lambs born per ewe exposed to rams and pere which lambed were 1.44 and 1.54, respectively. The average number of lambs weaned per ewe exposed and per ewe which lambed were 1.13 and 1.20, respectively. Crossbreeding resulted in no difference in the number of the lambs born per ewe exposed or lambing. However, Targhee ewes bred to Suffolk rams weaned approximately 1% more lambs at 90 days of age. Crossbred lambs were heavier than straightbred lambs by .97 lb. at birth, 4.7 lb. at weaning (90 days of age) 620 lb. more lamb per 100 ewes. Ewes weaning twins produced 43.8 lb. more lamb than ewews rearing a single lamb. Growth rate of male lambs appeared linear through at least 150 days of age

    Robust SARS-CoV-2 T cell responses with common TCR?? motifs toward COVID-19 vaccines in patients with hematological malignancy impacting B cells

    Get PDF
    Immunocompromised hematology patients are vulnerable to severe COVID-19 and respond poorly to vaccination. Relative deficits in immunity are, however, unclear, especially after 3 vaccine doses. We evaluated immune responses in hematology patients across three COVID-19 vaccination doses. Seropositivity was low after a first dose of BNT162b2 and ChAdOx1 (∼26%), increased to 59%–75% after a second dose, and increased to 85% after a third dose. While prototypical antibody-secreting cells (ASCs) and T follicular helper (Tfh) cell responses were elicited in healthy participants, hematology patients showed prolonged ASCs and skewed Tfh2/17 responses. Importantly, vaccine-induced expansions of spike-specific and peptide-HLA tetramer-specific CD4+/CD8+ T cells, together with their T cell receptor (TCR) repertoires, were robust in hematology patients, irrespective of B cell numbers, and comparable to healthy participants. Vaccinated patients with breakthrough infections developed higher antibody responses, while T cell responses were comparable to healthy groups. COVID-19 vaccination induces robust T cell immunity in hematology patients of varying diseases and treatments irrespective of B cell numbers and antibody response

    A high-capacity scintillation proximity assay for the discovery and evaluation of ZAP-70 tandem SH2 domain antagonists

    No full text
    A scintillation proximity assay (SPA) is described, which quantitates the ability of compounds to inhibit the binding interaction of a select phosphopeptide with the tandem SH2 domains of the ZAP-70 protein tyrosine kinase. The method is based on the ability of a truncated ZAP-70 tandem SH2 domain-derived peptide to bind an 125I-labeled, diphosphorylated peptide corresponding to the human T-cell receptor ζ-1 immunoglobulin receptor family tyrosine-based activation motif (ITAM). ZAP-70 tandem SH2 domain peptide was biotinylated and bound to streptavidin-coated SPA beads. 125I-labeled ζ-1 ITAM ([125I]-ζ-1 ITAM) bound to immobilized ZAP-70 tandem SH2 domain peptide in a saturable, time- and peptide concentration-dependent fashion. Unlabeled diphosphorylated ζ-1 ITAM competed binding with an ICso value equal to approximately 10-15 nM. Binding of ζ-1 ITAM to the ZAP-70 tandem SH2 domain was dependent on the cooperative interaction of the dual phosphotyrosine residues. Unlabeled monotyrosyl-phosphorylated peptides failed to compete with [125I]-ζ-1 ITAM binding to ZAP-70 SH2 domain. Also, labeled monotyrosyl-phosphorylated peptides failed to associate with the ZAP-70 SH2 domain in direct binding studies. Association and dissociation binding kinetics were determined to be extremely rapid at room temperature, reaching equilibrium within 5 min. The Kd for [125I]-ζ-1 ITAM binding to ZAP-70 tandem SH2 domain peptide was determined by Scatchard analysis to be 1.5-2 nM. The SPA assay was adapted for automated, high-capacity screening, which allowed evaluation of 23,040 small molecular weight compounds per day. The assay is useful for both drug discovery and as a research tool for the study of binding interactions between signal-transducing molecules critical for T-cell activation

    A Macrolactam Inhibitor of T Helper Type 1 and T Helper Type 2 Cytokine Biosynthesis for Topical Treatment of Inflammatory Skin Diseases1

    Get PDF
    T lymphocytes play a critical part in inflammatory skin diseases but are targeted by available therapies that have only partial efficacy, significant side-effects, or both. Because psoriasis, atopic dermatitis, and allergic contact hypersensitivity are associated with T helper type 1 (Th1), T helper type 2 (Th2), or mixed Th1–Th2 cell subsets and cytokine types, respectively, there is a need for a better broad-based inhibitor. The macrolactam ascomycin analog, ABT-281, was found to inhibit potently T cell function across species and to inhibit expression of multiple cytokines in human peripheral blood leukocytes which have been found in human skin disease cells and tissues. These included immunoregulatory Th1 (interleukin-2 and interferon-γ) and Th2 (interleukin-4 and interleukin-5) cytokines. ABT-281 was shown to have potent topical activity (ED50 = 0.6% in acetone/olive oil) in a stringent swine model of allergic contact hypersensitivity, but its potency was markedly reduced compared with ascomycin when administered systemically due to more rapid clearance. Topical application of 3% ABT-281 in acetone/olive oil over 25% of the body surface in swine resulted in undetectable blood levels. Compared with a wide potency range of topical corticosteroids in clinical formulations, 0.3% and 1% ABT-281 ointments profoundly inhibited dinitrochlorobenzene-induced contact hypersensitivity in the pig by 78% and 90%, respectively, whereas super-potent steroids such as clobetasol propionate only inhibited in the 50% range and mild to moderate potency steroids such as fluocinolone acetonide were inactive. The potent topical activity of ABT-281 in swine, its superior efficacy, its rapid systemic clearance following uptake into the bloodstream, and its ability to inhibit cytokine biosynthesis of both Th1 and Th2 cell subsets, suggests that it will have a broad therapeutic value in inflammatory skin diseases, including psoriasis, atopic dermatitis, and allergic contact dermatitis

    PTP1B antisense oligonucleotide lowers PTP1B protein, normalizes blood glucose, and improves insulin sensitivity in diabetic mice

    No full text
    The role of protein-tyrosine phosphatase 1B (PTP1B) in diabetes was investigated using an antisense oligonucleotide in ob/ob and db/db mice. PTP1B antisense oligonucleotide treatment normalized plasma glucose levels, postprandial glucose excursion, and HbA(1C). Hyperinsulinemia was also reduced with improved insulin sensitivity. PTP1B protein and mRNA were reduced in liver and fat with no effect in skeletal muscle. Insulin signaling proteins, insulin receptor substrate 2 and phosphatidylinositol 3 (PI3)-kinase regulatory subunit p50α, were increased and PI3-kinase p85α expression was decreased in liver and fat. These changes in protein expression correlated with increased insulin-stimulated protein kinase B phosphorylation. The expression of liver gluconeogenic enzymes, phosphoenolpyruvate carboxykinase, and fructose-1,6-bisphosphatase was also down-regulated. These findings suggest that PTP1B modulates insulin signaling in liver and fat, and that therapeutic modalities targeting PTP1B inhibition may have clinical benefit in type 2 diabetes
    corecore