57 research outputs found

    Current driven magnetization dynamics in ferromagnetic nanowires with Dzyaloshinskii-Moriya interaction

    Get PDF
    We study current induced magnetization dynamics in a long thin ferromagnetic wire with Dzyaloshinskii-Moriya interaction (DMI). We find a spiral domain wall configuration of the magnetization and obtain an analytical expression for the width of the domain wall as a function of the interaction strengths. Our findings show that above a certain value of DMI a domain wall configuration cannot exist in the wire. Below this value we determine the domain wall dynamics for small currents, and calculate the drift velocity of the domain wall along the wire. We show that the DMI suppresses the minimum value of current required to move the domain wall. Depending on its sign, the DMI increases or decreases the domain wall drift velocity.Comment: 4 pages, 2 figure

    Minimization of Ohmic losses for domain wall motion in a ferromagnetic nanowire

    Get PDF
    We study current-induced domain-wall motion in a narrow ferromagnetic wire. We propose a way to move domain walls with a resonant time-dependent current which dramatically decreases the Ohmic losses in the wire and allows to drive the domain wall with higher speed without burning the wire. For any domain wall velocity we find the time-dependence of the current needed to minimize the Ohmic losses. Below a critical domain-wall velocity specified by the parameters of the wire the minimal Ohmic losses are achieved by dc current. Furthermore, we identify the wire parameters for which the losses reduction from its dc value is the most dramatic.Comment: 4 pages (+ 4 pages of supplementary material), 4 figure

    Electric signature of magnetic domain-wall dynamics

    Get PDF
    We study current-induced domain-wall dynamics in a thin ferromagnetic nanowire. The domain-wall dynamics is described by simple equations with four parameters. We propose the procedure to determine these parameters by all-electric measurements of the time-dependent voltage induced by the domain-wall motion. We provide an analytical expression for the time variation of this voltage. Furthermore, we show that the measurement of the proposed effects is within reach with current experimental techniques.Comment: 5 pages, 5 figures, update to published versio

    Holey topological thermoelectrics

    Full text link
    We study the thermoelectric properties of three-dimensional topological insulators with many holes (or pores) in the bulk. We show that at high density of these holes the thermoelectric figure of merit ZT can be large due to the contribution of the conducting surfaces and the suppressed phonon thermal conductivity. The maximum efficiency can be tuned by an induced gap in the surface states dispersion through tunneling or external magnetic fields. The large values of ZT, much higher than unity for reasonable parameters, make this system a strong candidate for applications in heat management of nanodevices, especially at low temperatures.Comment: 4+ pages, 6 figure

    Engineering Curvature Induced Anisotropy in Thin Ferromagnetic Films

    Get PDF
    The large curvature effects on micromagnetic energy of a thin ferromagnetic film with nonlocal dipolar energy are considered. We predict that the dipolar interaction and surface curvature can produce perpendicular anisotropy which can be controlled by engineering a special type of periodic surface shape structure. Similar effects can be achieved by a significant surface roughness in the film. We show that in general the anisotropy can point in an arbitrary direction depending on the surface curvature. We provide simple examples of these periodic surface structures to demonstrate how to engineer particular anisotropies in the film.Comment: 5 pages, 4 figure

    Multiscale Model Approach for Magnetization Dynamics Simulations

    Full text link
    Simulations of magnetization dynamics in a multiscale environment enable rapid evaluation of the Landau-Lifshitz-Gilbert equation in a mesoscopic sample with nanoscopic accuracy in areas where such accuracy is required. We have developed a multiscale magnetization dynamics simulation approach that can be applied to large systems with spin structures that vary locally on small length scales. To implement this, the conventional micromagnetic simulation framework has been expanded to include a multiscale solving routine. The software selectively simulates different regions of a ferromagnetic sample according to the spin structures located within in order to employ a suitable discretization and use either a micromagnetic or an atomistic model. To demonstrate the validity of the multiscale approach, we simulate the spin wave transmission across the regions simulated with the two different models and different discretizations. We find that the interface between the regions is fully transparent for spin waves with frequency lower than a certain threshold set by the coarse scale micromagnetic model with no noticeable attenuation due to the interface between the models. As a comparison to exact analytical theory, we show that in a system with Dzyaloshinskii-Moriya interaction leading to spin spiral, the simulated multiscale result is in good quantitative agreement with the analytical calculation

    Magnetoelectric domain wall dynamics and its implications for magnetoelectric memory

    Get PDF
    Domain wall dynamics in a magnetoelectric antiferromagnet is analyzed, and its implications for magnetoelectric memory applications are discussed. Cr2O3 is used in the estimates of the materials parameters. It is found that the domain wall mobility has a maximum as a function of the electric field due to the gyrotropic coupling induced by it. In Cr2O3, the maximal mobility of 0.1 m/(s Oe) is reached at E = 0.06 V/nm. Fields of this order may be too weak to overcome the intrinsic depinning field, which is estimated for B-doped Cr2O3. These major drawbacks for device implementation can be overcome by applying a small in-plane shear strain, which blocks the domain wall precession. Domain wall mobility of about 0.7 m/(s Oe) can then be achieved at E = 0.2 V/nm. A split-gate scheme is proposed for the domain-wall controlled bit element; its extension to multiple-gate linear arrays can offer advantages in memory density, programmability, and logic functionality

    Walker solution for Dzyaloshinskii domain wall in ultrathin ferromagnetic films

    Get PDF
    We analyze the electric current and magnetic field driven domain wall motion in perpendicularly magnetized ultrathin ferromagnetic films in the presence of interfacial Dzyaloshinskii-Moriya interaction and both out-of-plane and in-plane uniaxial anisotropies. We obtain exact analytical Walker-type solutions in the form of one-dimensional domain walls moving with constant velocity due to both spin-transfer torques and out-of-plane magnetic field. These solutions are embedded into a larger family of propagating solutions found numerically. Within the considered model, we find the dependencies of the domain wall velocity on the material parameters and demonstrate that adding in-plane anisotropy may produce domain walls moving with velocities in excess of 500 m/s in realistic materials under moderate fields and currents.Comment: 6 pages, 2 figure
    • …
    corecore