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Current driven magnetization dynamics in ferromagnetic nanowires with

Dzyaloshinskii-Moriya interaction
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We study current induced magnetization dynamics in a long thin ferromagnetic wire with
Dzyaloshinskii-Moriya interaction (DMI). We find a spiral domain wall configuration of the magne-
tization and obtain an analytical expression for the width of the domain wall as a function of the
interaction strengths. Our findings show that above a certain value of DMI a domain wall configu-
ration cannot exist in the wire. Below this value we determine the domain wall dynamics for small
currents, and calculate the drift velocity of the domain wall along the wire. We show that the DMI
suppresses the minimum value of current required to move the domain wall. Depending on its sign,
the DMI increases or decreases the domain wall drift velocity.

PACS numbers: 75.78.Fg; 75.60.Ch; 71.70.Ej

Introduction. A number of recent experiments, per-
formed in various metallic magnets, have shown the spiral
structure of magnetization due to Dzyaloshinskii-Moriya
interaction (DMI) [1, 2, 3, 4, 5, 6, 7, 8]. In particular,
the B20 structure of ferromagnets, such as MnSi, which
lacks strict space-inversion symmetry, leads to a long-
wavelength helical twist in the magnetization [4, 5, 6].
Furthermore, the direct space-time observation of the spi-
ral structure by Lorentz microscopy became possible for
DMI-induced helimagnets [7, 8]. Using spin-polarized
scanning tunneling microscopy it has been shown that
the magnetic order of 1 monolayer Mn on W(001) is a
left-handed spiral [2] and that the magnetic structure of
the Fe double layer on W(110) is a right-rotating spiral
[1]. All these spiral states are the consequence of DMI.

A spin-polarized current flowing through such spiral
magnetic structures would exert a spin-torque which
could be used for manipulations of the magnetization
with potential applications. For example, in magnetic
memory devices [9, 10] the key issue is to manipulate the
domain wall (DW) configurations by means of magnetic
fields and/or spin-polarized current. Therefore, current-
induced dynamics of spiral magnets is an important sub-
ject of technological relevance.

One of the most important factors which effects the
DW motion is pinning. The DW pinning can have “ex-
trinsic” and “intrinsic” nature. The extrinsic pinning
is due to surface roughness and other irregularities of
the wires which brake translational invariance. On the
other hand, the intrinsic pinning is present even in ideally
smooth (translation invariant) nanowires. It depends on
the wire geometry and material parameters which can
be described by anisotropies. Although extrinsic pinning
can be significantly reduced in the near future with the
help of more sophisticated wire fabrication techniques,
the intrinsic pinning is always present. Therefore, in this
Letter we concentrate on the more important case of DW
dynamics with the intrinsic pinning.

We determine the effect of a polarized current on the

magnetization configuration in the ferromagnetic wire
with both strong easy-axis anisotropy along its axis and
weak anisotropy in the plane transverse to the wire. The
DMI, which arises from spin-orbit scattering of electrons
in non-centrosymmetric magnetic materials is typically
irrelevant in bulk metals as their crystals are inversion-
symmetric. However, in low-dimensional systems (such
as atomic layers and wires), which lack structural inver-
sion symmetry, the DMI in the presence of softened fer-
romagnetic exchange coupling leads to the formation of
the spiral spin structures.

The main goal of this Letter is to study the influence
of DMI on the magnetization dynamics in ferromagnets.
We obtain the expression for the DW width as a function
of the DMI constant, uniaxial anisotropy along the wire,
and exchange interaction constant. We find that there
is a critical value of the DMI above which a DW config-
uration cannot exist in the wire. This result can have
an important implication for the future experiments by
setting a limit on the devices with DMI which use DWs
for information manipulation. Below this critical value
of DMI the DW can propagate along the wire and ro-
tate around its axis. Any angle is equally favorable for
the DW if there is no anisotropy in the transverse plane.
Generally speaking in most wires there exists such an
anisotropy due to the asymmetry of the wire cross sec-
tion. We show that it leads to a chosen direction of the
magnetization in the center of the DW, so that the wall
cannot rotate freely anymore. Therefore, if a polarized
current is passing through such a wire, the DW will move
only if the current is larger than a certain critical value.
This value corresponds to the minimal torque needed to
be pumped into the system to rotate the spins of the DW
around the wire’s axis.

We investigate the dynamics of the DW in the small
transverse anisotropy regime. In particular, we find the
drift (average) velocity of the DW in the wire with DMI.
Our findings also show that DMI decreases the critical
value of current required to move a DW. To obtain all
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these results for the DW dynamics, we use a universal
method for finding zero mode dynamics of spin textures.
This method is described in detail in the supplementary
material [11].
Model. We employ a simple theoretical model of a fer-

romagnet with DMI and anisotropies which highlights a
new kind of behavior of DW structures. We consider a
Hamiltonian for a ferromagnet which has two terms de-
scribing the exchange and Dzyaloshinskii-Moriya inter-
actions [12, 13]. Without anisotropies in the continuous
limit this Hamiltonian takes the form,

H0 =

∫

d3r

[

J0
2

(∇M)
2
+D0M · (∇×M)

]

. (1)

Here M is a magnetization vector, J0 > 0 is exchange
interaction constant, and D0 is the DMI constant. We
study a ferromagnetic wire which is modeled as a one-
dimensional (1D) classical spin chain [21], where the wire
is along the z-axis, see Fig. 1. For the thin long wire with
uniaxial anisotropy Hamiltonian (1) modifies to

H =

∫

dz

[

J

2
(∂S)

2
+DS · (ez × ∂S)− λS2

z

]

. (2)

Here ez is the unit vector in z direction, ∂ = ∂/∂z,
and we introduced normalized magnetization vector S =
M/M , so that S

2 = 1, D = D0/(AM
2), and J =

J0/(AM
2), where A is the cross-sectional area of the

wire. The last term in Eq. (2) is due to uniaxial
anisotropy (with the anisotropy constant λ = λ0/(AM

2))
which shows that the system favors the magnetization
along the wire.
To study the magnetization dynamics we employ the

generalized Landau-Lifshitz-Gilbert equation [14, 15] for
1D wire with current j along the wire:

Ṡ = S×He − j∂S+ βjS× ∂S+ αS× Ṡ. (3)

where He = δH/δS, Ṡ = dS/dt, α = α0/M
2 and α0 is

the Gilbert damping constant, β = β0/M
2 and β0 is the

constant of nonadiabatic current term, time is measured
in the units of the gyromagnetic ratio γ0 = g |e| /(2mc),
and the current j is measured in units of a3/(2eMγ0)
where a is the lattice constant. Generally speaking one
also has to specify the boundary conditions for Eq. (3).
A general solution of one-dimensional LLG equation

(3) can always be presented in the form

∂S = Γ(z, t)ez × S+ Λ(z, t)S× [ez × S], (4)

where Γ and Λ are in general two independent functions
of z and t; it also follows that ∂Sz = Λ(1− S2

z ).
Zero current. First we consider the simplest case of

zero current (j = 0) and look for a time-independent
magnetization configuration. This means that we need
to minimize Hamiltonian (2) which can be written up to

1
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FIG. 1: (color online) Sketch of the wire with magnetization
profile for a DW. λ and K denote the anisotropies along and
transverse to the wire, respectively. The upper inset shows
the dependence of jc on the twist Γ∆, Eq. (18); the lower
inset shows drift velocity Vd and variance 〈(δV )2〉T (in arb.
units) vs. current j, see Eqs. (20) and (21).

a constant in the form

H=

∫

dz

[

J

2

(

∂S− D

J
ez × S

)2

+

(

λ− D2

2J

)

(1− S2
z )

]

.

(5)
The spin configuration depends on the sign of λ−D2/2J .
For 2Jλ < D2 the minimum of the second term is at

Sz = 0. The first term is minimized by the condition
∂S = D

J
ez × S, so that the solution is a spiral,

S = (cos(Γz + φ0), sin(Γz + φ0), 0)
T , Γ = D/J. (6)

The ground state is thus unique and there is no DW
configuration. Therefore, for the wires with weak enough
uniaxial anisotropy and/or exchange constant the spiral
magnetization state can prevent the formation of DWs.
For 2Jλ > D2 the minimum of the second term is at

Sz = ±1. This also minimizes the first term in Eq. (5).
Thus, Sz = ±1 are the two solutions, and a DW can exist
in the wire as a transition from one solution to another.
Below we study the statics and dynamics of such a

DW in the wire, and therefore we concentrate on the
case 2Jλ > D2. Then the boundary conditions for Eq.
(3) are Sz → ±1 at z → ±∞. To find the static configu-
ration of the DW we consider the solution in the form (4).
Substituting it into Hamiltonian (5), we find

H =

∫

dz

[

J

2

(

Γ− D

J

)2

+
J

2
Λ2 + λ− D2

2J

]

(1− S2
z ).

(7)
The minimization of the first term sets

Γ = D/J , (8)
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cf. Eq. (6). Using parametrization Sz = tanh f(z), we
obtain

H =
J

2

∫

dz
(∂f)2 +∆−2

cosh2 f
, ∆−2 = ∆−2

0 − Γ2, (9)

where ∆2
0 =

√

J/2λ is the DW width in the absence of
DMI. The straightforward minimization of Eq. (9) gives
f = z/∆ or Λ = 1/∆, and in components the solution
takes the form

Sx =
cos(Γ(z − z0) + φ)

cosh((z − z0)/∆)
, (10a)

Sy =
sin(Γ(z − z0) + φ)

cosh((z − z0)/∆)
, (10b)

Sz = tanh(z − z0)/∆), (10c)

where the angle φ is the tilt of the DW, and z0 is its
position (both arbitrary). We see that 2π/Γ is the pitch
of the spiral, ∆ is the width of the DW and Γ∆ is thus the
twist of the DW. Both Γ and ∆ have the same functional
dependencies in terms of J0, D0, and λ0 as in terms of
J , D, and λ. According to its definition in Eq. (9), ∆
becomes infinite in the limit 2Jλ = D2 and DW cannot
be sustained in the wire.
The energy of the DW is E = 2J/∆ = 2

√
2Jλ−D2.

It vanishes when D2 approaches 2Jλ.
The z component of the magnetization (10) is the same

as that of a standard (without DMI) DW of width ∆.
The direction of the twist of the DW depends on the
sign of DMI and can be either clock or counterclockwise.
Parameters z0 and φ in Eq. (10) correspond to two

zero-modes of the system. These modes are the most
relevant if the system is perturbed. The time-dependent
solution then can be represented in the form of a moving
and rotating DW plus a small correction to its shape.
The requirement that the correction remains small dur-
ing the motion leads to the equations for the velocity
and angular velocity of the DW. A detailed derivation of
these equations is presented in the supplementary mate-
rial [11]. Below we present the results and discuss their
implications.
Small currents. First we find the magnetization dy-

namics in the wire for small applied currents. We denote
the solution (10) for the DW without a current, as S0(z).
When the current is applied we expect the DW to move
and rotate. The full dynamics is described by the equa-
tion

Ṡ = S×He + h, He = δH/δS, (11)

where the correction h for small currents is h = hj ,

hj = −j∂S0+(βj−αż0)S0×∂S0+αφ̇S0×ez×S0. (12)

This correction gives the following results for the DW
velocity and angular velocity:

ż0 =
1 + αβ + (α− β)Γ∆

1 + α2
j, φ̇ =

(α − β)∆

(1 + α2)∆2
0

j . (13)

A few conclusions can be made from these equations.
i.) The direction of the DW rotation depends only on

the relative strength of the two dissipative terms in the
LLG Eq. (3). Remarkably, the sign of the DMI correction
to the DW velocity depends on weather the DW rotates
in the same direction as the twist of the DW.
ii.) For β = 0 there is an integral of motion α(Γ2 +

∆−2)z0 − (1/∆ + αΓ)φ = const. If we take 1/∆ = 0
which corresponds to a perfect spiral state (DW width is
infinite), this invariant just describes the rotation of the
spiral while it moves.
iii.) At very large twists Γ∆, ż0 = φ̇ΓJ/2λ, indepen-

dently of both α and β.
iv.) The DW rotation and its velocity diverge when

D2 approaches 2λJ . This nonphysical result is the con-
sequence of the fact that our derivation of Eq. (13)
neglects all modes except the zero ones. However, in the
limit of D2 → 2λJ the breathing mode (the mode that
corresponds to the change of the DW width and pitch)
softens and its dynamics cannot be neglected [16].
In line with the general result [17], in the special case

of α = β, the DW does not rotate and just moves with
the velocity which depends on current only.
Small anisotropy in the transverse plane. In order to

account for the anisotropy in the transverse plane we
introduce a correction to Hamiltonian (2) in the form

Hxy =

∫

dzKS2
y(z), (14)

where the anisotropy constant K > 0 is very small.
The presence of this anisotropy fixes the tilt angle φ of

the solution (10). To show it we calculate the correction
to the energy to the first order in K by substituting Eq.
(10) into Eq. (14). Assuming the wall to be at the origin

(z0 = 0), we obtain δ1E = K∆− 2πKΓ∆2

sinh(πΓ∆) cos(2φ). This

correction has a minimum at φ = 0, π. When DMI is ab-
sent (Γ = 0) this correction reduces to K∆[1−2 cos(2φ)].
Dynamics and transverse anisotropy. Now we find how

the small anisotropy in the transverse plane affects the
magnetization dynamics. The correction h defined in
Eq. (11) takes the form h = hj + hxy, where hj is given
by Eq. (12) and

hxy = S× δHxy

δS
= 2KSyS× ey . (15)

This perturbation leads to the following equations for
the position of the DW and the tilt angle:

ż0 =
β

α
j +

(α− β)(1 + αΓ∆)

α(1 + α2)
[j − jc sin(2φ)] , (16)

φ̇ =
(α− β)∆

(1 + α2)∆2
0

[j − jc sin(2φ)] , (17)

where the critical current jc is given by

jc = j∆
πΓ∆

sinh(πΓ∆)
, j∆ =

αK∆

|α− β| . (18)
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FIG. 2: (color online) Velocities ż0 and φ̇ given by Eqs. (16)
and (17) at j = 1.1jc vs. time. (In arb. units)

j∆ is a critical current for the domain wall of the same
width, but without the twist. These equations reduce to
Eq. (13) for K = 0. We also note that Eq. (18) is correct
only in the first order in K.
The critical current jc is exponentially suppressed for

twists Γ∆ & 1/π. For small twists jc ≈ j∆(1 −
π2(Γ∆)2/6). Note that jc in Eq. (18) diverges at α = β,
that is the DW does not spin for any current [17].
For j < jc the DW tilts by the angle sin(2φj) = j/jc

and moves with a constant velocity ż0 = jβ/α, if β = 0,
the DW does not move at all. For j > jc the DW both
spins and moves along the wire.
Eqs. (17) and (16) can be solved analytically. The solu-

tion gives both the velocity and angular velocity, which
periodically depend on time [18] (see Fig. 2), with the
period T and average angular velocity Ω given by [11]:

Ω =
2π

T
=

(α− β)∆

(1 + α2)∆2
0

√

j2 − j2c . (19)

More experimentally relevant, however, is the average
(drift) velocity of the DW Vd = 〈ż0〉T . For any current
it is given by [11]

Vd =

{

β
α
j, for j < jc,

β
α
j + (α−β)(1+αΓ∆)

α(1+α2)

√

j2 − j2c , for j > jc.
(20)

The square of the deviation of the velocity from the drift
velocity, Eq. (20), 〈(δV )2〉T is

〈(δV )2〉T =







0, for j < jc,
[

(α−β)(1+αΓ∆)
α(1+α2) jc

]2
√

j2−j2
c

j+
√

j2−j2
c

, for j > jc.

(21)
Both Vd(j) and 〈(δV )2〉T are shown in the inset of Fig. 1.
For large currents, j ≫ jc, the drift velocity asymptot-
ically approaches the velocity given by Eq. (13), while
〈(δV )2〉T approaches a constant.
Summary. We have studied the effects of DMI on the

magnetization statics and dynamics in a thin ferromag-
netic wire. We have derived a simple criterion which de-
termines whether the wire with the spiral magnetization
state can sustain a DW configuration. Namely, in the
wires with weak enough uniaxial anisotropy and/or ex-
change constant compared to DMI constant (2Jλ < D2)

a DW cannot be formed. In the opposite case (2Jλ >
D2) we have found the spiral magnetization state with
a DW in the wire. For β = 0 the wall moves along
the wire only if the applied current is above jc given by
Eq. (18). The variance of the velocity in this regime is
given by 〈(δV )2〉T = V 2

d (j/
√

j2 − j2c − 1). For β 6= 0
the DW moves but does not rotate for currents below jc.
Above jc the DW both moves and rotates [18]. Our re-
sult, Eq. (18), shows that the critical value of current is
suppressed by DMI. We also have derived the expression,
Eq. (20), for the drift velocity Vd of the DW for all values
of current. It shows that above the critical current jc the
drift velocity can be enhanced by DMI.
We believe that our findings can be experimentally ob-

served, e.g., with the use of the scanning tunneling mi-
croscopy which was employed to reveal the DW structure
in ultrathin Fe nanowires [19, 20]. We note that in a real-
istic experimental setting besides the “intrinsic” pinning
there always going to be an extrinsic pinning due to a
nonideal shape of the wire. It is, however, clear that in
the near future the development of better nanofabrica-
tion techniques will lead to the situation when one has
to worry mostly about the “intrinsic” effect.
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