9 research outputs found

    Tumor cell SYK expression modulates the tumor immune microenvironment composition in human cancer via TNF-α dependent signaling

    No full text
    Background The expression of SYK in cancer cells has been associated with both tumor promoting and tumor suppressive effects. Despite being proposed as anticancer therapeutic target, the possible role of SYK in modulating local adaptive antitumor immune responses remains uncertain. Using detailed analysis of primary human tumors and in vitro models, we reveal the immunomodulatory effect of SYK protein in human solid cancer. Methods We spatially mapped SYK kinase in tumor cells, stromal cells and tumor-infiltrating leukocytes (TILs) in 808 primary non-small cell lung carcinomas (NSCLCs) from two cohorts and in 374 breast carcinomas (BCs) from two independent cohorts. We established the associations of localized SYK with clinicopathologic variables and outcomes. The immunomodulatory role of SYK on tumor cells was assessed using in vitro cytokine stimulation, transcriptomic analysis and selective SYK blockade using a small molecule inhibitor. Functional responses were assessed using cocultures of tumor cells with peripheral blood lymphocytes. T cell responses in baseline and post-Treatment biopsies from patients with BC treated with a SYK inhibitor in a phase I clinical trial were also studied. Results Elevated tumor cell or leukocyte SYK expression was associated with high CD4 + and CD8 + TILs and better outcome in both NSCLC and BC. Tumor cell SYK was associated with oncogenic driver mutations in EGFR or KRAS in lung adenocarcinomas and with triple negative phenotype in BC. In cultured tumor cells, SYK was upregulated by TNFα and required for the TNFα-induced proinflammatory responses and T cell activation. SYK blockade after nivolumab in a phase I clinical trial including three patients with advanced triple negative BC reduced TILs and T cell proliferation. Our work establishes the proinflammatory function of tumor cell SYK in lung and breast cancer. SYK signaling in cultured tumor cells is required for T cell activation and SYK blockade limits adaptive antitumor immune responses and tumor rejection in patients with cancer. Conclusions Together, our results establish the immunomodulatory role of SYK expression in human solid tumors. This information could be used to develop novel biomarkers and/or therapeutic strategies. © 2022 BioMed Central Ltd.. All rights reserved

    Mutation of NRAS but not KRAS significantly reduces myeloma sensitivity to single-agent bortezomib therapy

    No full text
    Various translocations and mutations have been identified in myeloma, and certain aberrations, such as t(4;14) and del17, are linked with disease prognosis. To investigate mutational prevalence in myeloma and associations between mutations and patient outcomes, we tested a panel of 41 known oncogenes and tumor suppressor genes in tumor samples from 133 relapsed myeloma patients participating in phase 2 or 3 clinical trials of bortezomib. DNA mutations were identified in 14 genes. BRAF as well as RAS genes were mutated in a large proportion of cases (45.9%) and these mutations were mutually exclusive. New recurrent mutations were also identified, including in the PDGFRA and JAK3 genes. NRAS mutations were associated with a significantly lower response rate to single-agent bortezomib (7% vs 53% in patients with mutant vs wildtype NRAS, P 5 .00116, Bonferroni-corrected P 5 .016), as well as shorter time to progression in bortezomib-treated patients (P 5 .0058, Bonferroni-corrected P 5 .012). However, NRAS mutation did not impact outcome in patients treated with high-dose dexamethasone. KRAS mutation did not reduce sensitivity to bortezomib or dexamethasone. These findings identify a significant clinical impact of NRAS mutation in myeloma and demonstrate a clear example of functional differences between the KRAS and NRAS oncogenes. (Blood. 2014; 123(5):632-639)

    Upstream stimulating factors: highly versatile stress-responsive transcription factors

    No full text
    International audienceUpstream stimulating factors (USF), USF-1 and USF-2, are members of the eucaryotic evolutionary conserved basic-Helix-Loop-Helix-Leucine Zipper transcription factor family. They interact with high affinity to cognate E-box regulatory elements (CANNTG), which are largely represented across the whole genome in eucaryotes. The ubiquitously expressed USF-transcription factors participate in distinct transcriptional processes, mediating recruitment of chromatin remodelling enzymes and interacting with co-activators and members of the transcription pre-initiation complex. Results obtained from both cell lines and knock-out mice indicates that USF factors are key regulators of a wide number of gene regulation networks, including the stress and immune responses, cell cycle and proliferation, lipid and glucid metabolism, and in melanocytes USF-1 has been implicated as a key UV-activated regulator of genes associated with pigmentation. This review will focus on general characteristics of the USF-transcription factors and their place in some regulatory networks
    corecore