1,640 research outputs found

    Judicial enforcement of species monitoring requirements in forest plans: Ripeness and agency deference

    Get PDF

    Impacts on High-level Systems-of-Systems Figures of Merit due to Integrated Architecture Sizing and Technology Evaluation at the Subsystem-Level

    Get PDF
    Understanding the impacts on high-level system-of-systems (SOS) figures of merit (FOMs) due to the design of architectures and technologies is critical in providing decision makers sufficient information in selecting suitable alternatives in an effort to reduce costly financial and schedule overruns. Several techniques exist within academia and industry for performing SOS architecture design and technology evaluation. However, these techniques fail to solve the problem in an integrated fashion when defined at the subsystem-level. In order to understand the impacts on high-level SOS FOMs due to integrated architecture sizing and technology evaluation, a general concept exploration process is utilized to perform a notional 2033 manned Mars fly by study. The notional study draws out observation with regard to specific FOMs traditionally used during the subsystem-level sizing and technology evaluation processes which can result in misleading conclusions regarding the overall SOS design. Furthermore, these observations suggest that selection of FOMs for the subsystems of an architecture should be influenced by the desired objectives of the high-level SOS objectives and FOMs

    Orbital Parameter Determination for Wide Stellar Binary Systems in the Age of Gaia

    Full text link
    The orbits of binary stars and planets, particularly eccentricities and inclinations, encode the angular momentum within these systems. Within stellar multiple systems, the magnitude and (mis)alignment of angular momentum vectors among stars, disks, and planets probes the complex dynamical processes guiding their formation and evolution. The accuracy of the \textit{Gaia} catalog can be exploited to enable comparison of binary orbits with known planet or disk inclinations without costly long-term astrometric campaigns. We show that \textit{Gaia} astrometry can place meaningful limits on orbital elements in cases with reliable astrometry, and discuss metrics for assessing the reliability of \textit{Gaia} DR2 solutions for orbit fitting. We demonstrate our method by determining orbital elements for three systems (DS Tuc AB, GK/GI Tau, and Kepler-25/KOI-1803) using \textit{Gaia} astrometry alone. We show that DS Tuc AB's orbit is nearly aligned with the orbit of DS Tuc Ab, GK/GI Tau's orbit might be misaligned with their respective protoplanetary disks, and the Kepler-25/KOI-1803 orbit is not aligned with either component's transiting planetary system. We also demonstrate cases where \textit{Gaia} astrometry alone fails to provide useful constraints on orbital elements. To enable broader application of this technique, we introduce the python tool \texttt{lofti\_gaiaDR2} to allow users to easily determine orbital element posteriors.Comment: 18 pages, 10 figures, accepted for publication in Ap

    Reducing delays in the diagnosis and treatment of muscle-invasive bladder cancer using simulation modelling

    Get PDF
    This is the author accepted manuscript. The final version is available from SAGE Publications via the DOI in this record Objective: To develop a simulation model to identify key bottlenecks in the bladder cancer pathway at Royal Cornwall Hospital and predict the impact of potential changes to reduce these delays. Materials and methods: The diagnosis and treatment of muscle-invasive bladder cancer can suffer numerous delays, which can significantly affect patient outcomes. We developed a discrete event computer simulation model of the flow of patients through the bladder cancer pathway at the hospital, using anonymised patient records from 2014 and 2015. The changes tested in the model were for patients suspected to have muscle-invasive disease on flexible cystoscopy. Those patients were ‘fast-tracked’ to receive their transurethral resection of bladder tumour (TURBT) treatment using operating slots kept free for these patients. A staging computed tomography scan was booked in the haematuria clinic. Pathology requests were marked as 48 hour turnaround. The nurse specialist would then speak to the patient whilst they were on the ward following their TURBT to give information about their ongoing treatment and provide support. Results: The model predicted that if the changes were implemented, delays in the system could be reduced by around 5 weeks. The changes were implemented, and analysis of 3 months of the data post-implementation shows that the average time in the system was reduced by 5 weeks. The environment created by the changes in the pathway improved referral to treatment times in both muscle-invasive and non-muscle-invasive groups. Conclusion: The simulation model proved an invaluable tool for facilitating the implementation of changes. Simple changes to the pathway led to significant reductions in delays for bladder cancer patients at Royal Cornwall Hospital. Level of evidence: Not applicable for this cohort study.National Institute for Health Research (NIHR

    Polyesters based on aspartic acid and poly(ethylene glycol): Functional polymers for hydrogel preparation

    Get PDF
    Hydrogels are commonly used as scaffolds for the preparation of three-dimensional tissue constructs and for the encapsulation and delivery of cells in regenerative medicine. Polyesters are an attractive class of polymers for hydrogel preparation. However, most polyesters have hydrophobic backbones and lack pendent groups that can be chemically functionalized. We describe here the development of water-soluble polyesters based on aspartic acid and poly(ethylene glycol) (PEG) (600 or 1500 g/mol), having pendent reactive amines. The reactivity of these amines with methacrylic anhydride, maleic anhydride, and itaconic anhydride was explored for the introduction of crosslinkable groups. The resulting methacrylamide-functionalized polymers were successfully crosslinked to form hydrogels using a redox-initiated free radical polymerization. The use of 10% (weight/volume) of polymer, and 10 mM of potassium persulfate and tetramethylethylenediamine led to high (\u3e97%) gel content, and compressive moduli of 13–21 kPa. Human adipose-derived stromal cells were encapsulated during the crosslinking process and exhibited greater than 80% viability in the hydrogels prepared from the polyester containing 600 g/mol PEG, with lower viability observed for the polymer containing 1500 g/mol PEG. These results support the potential for aspartic acid-based copolymers with short PEG chains in the backbone to serve as a platform for cell encapsulation, with additional opportunities for further functionalization available in the future
    corecore