5,340 research outputs found
White Dwarf Cosmochronology in the Solar Neighborhood
The study of the stellar formation history in the solar neighborhood is a
powerful technique to recover information about the early stages and evolution
of the Milky Way. We present a new method which consists of directly probing
the formation history from the nearby stellar remnants. We rely on the volume
complete sample of white dwarfs within 20 pc, where accurate cooling ages and
masses have been determined. The well characterized initial-final mass relation
is employed in order to recover the initial masses (1 < M/Msun < 8) and total
ages for the local degenerate sample. We correct for moderate biases that are
necessary to transform our results to a global stellar formation rate, which
can be compared to similar studies based on the properties of main-sequence
stars in the solar neighborhood. Our method provides precise formation rates
for all ages except in very recent times, and the results suggest an enhanced
formation rate for the solar neighborhood in the last 5 Gyr compared to the
range 5 < Age (Gyr) < 10. Furthermore, the observed total age of ~10 Gyr for
the oldest white dwarfs in the local sample is consistent with the early
seminal studies that have determined the age of the Galactic disk from stellar
remnants. The main shortcoming of our study is the small size of the local
white dwarf sample. However, the presented technique can be applied to larger
samples in the future.Comment: 25 pages, 10 figures, accepted for publication in the Astrophysical
Journa
Superintegrability of the Tremblay-Turbiner-Winternitz quantum Hamiltonians on a plane for odd
In a recent FTC by Tremblay {\sl et al} (2009 {\sl J. Phys. A: Math. Theor.}
{\bf 42} 205206), it has been conjectured that for any integer value of ,
some novel exactly solvable and integrable quantum Hamiltonian on a plane
is superintegrable and that the additional integral of motion is a th-order
differential operator . Here we demonstrate the conjecture for the
infinite family of Hamiltonians with odd , whose first member
corresponds to the three-body Calogero-Marchioro-Wolfes model after elimination
of the centre-of-mass motion. Our approach is based on the construction of some
-extended and invariant Hamiltonian \chh_k, which can be interpreted
as a modified boson oscillator Hamiltonian. The latter is then shown to possess
a -invariant integral of motion \cyy_{2k}, from which can be
obtained by projection in the identity representation space.Comment: 14 pages, no figure; change of title + important addition to sect. 4
+ 2 more references + minor modifications; accepted by JPA as an FT
Early Childhood Intervention. Rationale, Timing and Efficacy
This paper provides a brief review of the economic rationale for investing in early childhood. It discusses the optimal timing of intervention, with reference to recent work in developmental neuroscience, and asks how early is early? It motivates the need for early intervention by providing an overview of the impact of adverse factors during the antenatal and early childhood period on outcomes later in life. Early childhood interventions, even poorly designed ones, are costly to implement, therefore it is vital that interventions are well-designed if they are to yield high economic and social returns. The paper therefore presents a set of guiding principles for the effectiveness of early intervention. It concludes by presenting a case for a new study of the optimal timing of interventions.Early childhood intervention, brain development, optimal timing
Necessary conditions for classical super-integrability of a certain family of potentials in constant curvature spaces
We formulate the necessary conditions for the maximal super-integrability of
a certain family of classical potentials defined in the constant curvature
two-dimensional spaces. We give examples of homogeneous potentials of degree -2
on as well as their equivalents on and for which these
necessary conditions are also sufficient. We show explicit forms of the
additional first integrals which always can be chosen polynomial with respect
to the momenta and which can be of an arbitrary high degree with respect to the
momenta
Destroying Aliases from the Ground and Space: Super-Nyquist ZZ Cetis in K2 Long Cadence Data
With typical periods of order 10 minutes, the pulsation signatures of ZZ Ceti
variables (pulsating hydrogen-atmosphere white dwarf stars) are severely
undersampled by long-cadence (29.42 minutes per exposure) K2 observations.
Nyquist aliasing renders the intrinsic frequencies ambiguous, stifling
precision asteroseismology. We report the discovery of two new ZZ Cetis in
long-cadence K2 data: EPIC 210377280 and EPIC 220274129. Guided by 3-4 nights
of follow-up, high-speed (<=30 s) photometry from McDonald Observatory, we
recover accurate pulsation frequencies for K2 signals that reflected 4-5 times
off the Nyquist with the full precision of over 70 days of monitoring (~0.01
muHz). In turn, the K2 observations enable us to select the correct peaks from
the alias structure of the ground-based signals caused by gaps in the
observations. We identify at least seven independent pulsation modes in the
light curves of each of these stars. For EPIC 220274129, we detect three
complete sets of rotationally split ell=1 (dipole mode) triplets, which we use
to asteroseismically infer the stellar rotation period of 12.7+/-1.3 hr. We
also detect two sub-Nyquist K2 signals that are likely combination (difference)
frequencies. We attribute our inability to match some of the K2 signals to the
ground-based data to changes in pulsation amplitudes between epochs of
observation. Model fits to SOAR spectroscopy place both EPIC 210377280 and EPIC
220274129 near the middle of the ZZ Ceti instability strip, with Teff =
11590+/-200 K and 11810+/-210 K, and masses 0.57+/-0.03 Msun and 0.62+/-0.03
Msun, respectively.Comment: 13 pages, 9 figures, 7 tables; accepted for publication in Ap
The Field White Dwarf Mass Distribution
We revisit the properties and astrophysical implications of the field white
dwarf mass distribution in preparation of Gaia applications. Our study is based
on the two samples with the best established completeness and most precise
atmospheric parameters, the volume-complete survey within 20 pc and the Sloan
Digital Sky Survey (SDSS) magnitude-limited sample. We explore the modelling of
the observed mass distributions with Monte Carlo simulations, but find that it
is difficult to constrain independently the initial mass function (IMF), the
initial-to-final-mass relation (IFMR), the stellar formation history (SFH), the
variation of the Galactic disk vertical scale height as a function of stellar
age, and binary evolution. Each of these input ingredients has a moderate
effect on the predicted mass distributions, and we must also take into account
biases owing to unidentified faint objects (20 pc sample), as well as unknown
masses for magnetic white dwarfs and spectroscopic calibration issues (SDSS
sample). Nevertheless, we find that fixed standard assumptions for the above
parameters result in predicted mean masses that are in good qualitative
agreement with the observed values. It suggests that derived masses for both
studied samples are consistent with our current knowledge of stellar and
Galactic evolution. Our simulations overpredict by 40-50% the number of massive
white dwarfs (M > 0.75 Msun) for both surveys, although we can not exclude a
Salpeter IMF when we account for all biases. Furthermore, we find no evidence
of a population of double white dwarf mergers in the observed mass
distributions.Comment: 15 pages, 16 figures, accepted for publication in MNRA
Third order superintegrable systems separating in polar coordinates
A complete classification is presented of quantum and classical
superintegrable systems in that allow the separation of variables in
polar coordinates and admit an additional integral of motion of order three in
the momentum. New quantum superintegrable systems are discovered for which the
potential is expressed in terms of the sixth Painlev\'e transcendent or in
terms of the Weierstrass elliptic function
3D Model Atmospheres for Extremely Low-Mass White Dwarfs
We present an extended grid of mean three-dimensional (3D) spectra for
low-mass, pure-hydrogen atmosphere DA white dwarfs (WDs). We use CO5BOLD
radiation-hydrodynamics 3D simulations covering Teff = 6000-11,500 K and logg =
5-6.5 (cgs units) to derive analytical functions to convert spectroscopically
determined 1D temperatures and surface gravities to 3D atmospheric parameters.
Along with the previously published 3D models, the 1D to 3D corrections are now
available for essentially all known convective DA WDs (i.e., logg = 5-9). For
low-mass WDs, the correction in temperature is relatively small (a few per cent
at the most), but the surface gravities measured from the 3D models are lower
by as much as 0.35 dex. We revisit the spectroscopic analysis of the extremely
low-mass (ELM) WDs, and demonstrate that the 3D models largely resolve the
discrepancies seen in the radius and mass measurements for relatively cool ELM
WDs in eclipsing double WD and WD + milli-second pulsar binary systems. We also
use the 3D corrections to revise the boundaries of the ZZ Ceti instability
strip, including the recently found ELM pulsators.Comment: 11 pages, 8 figures, accepted for publication in the Astrophysical
Journa
Infinite families of superintegrable systems separable in subgroup coordinates
A method is presented that makes it possible to embed a subgroup separable
superintegrable system into an infinite family of systems that are integrable
and exactly-solvable. It is shown that in two dimensional Euclidean or
pseudo-Euclidean spaces the method also preserves superintegrability. Two
infinite families of classical and quantum superintegrable systems are obtained
in two-dimensional pseudo-Euclidean space whose classical trajectories and
quantum eigenfunctions are investigated. In particular, the wave-functions are
expressed in terms of Laguerre and generalized Bessel polynomials.Comment: 19 pages, 6 figure
- …