2,892 research outputs found

    The Non-thermal Radio Jet Toward the NGC 2264 Star Formation Region

    Full text link
    We report sensitive VLA 3.6 cm radio observations toward the head of the Cone nebula in NGC 2264, made in 2006. The purpose of these observations was to study a non-thermal radio jet recently discovered, that appears to emanate from the head of the Cone nebula. The jet is highly polarized, with well-defined knots, and one-sided. The comparison of our images with 1995 archive data indicates no evidence of proper motions nor polarization changes. We find reliable flux density variations in only one knot, which we tentatively identify as the core of a quasar or radio galaxy. An extragalactic location seems to be the best explanation for this jet.Comment: 12 pages, 5 figure

    Defects and boundary layers in non-Euclidean plates

    Full text link
    We investigate the behavior of non-Euclidean plates with constant negative Gaussian curvature using the F\"oppl-von K\'arm\'an reduced theory of elasticity. Motivated by recent experimental results, we focus on annuli with a periodic profile. We prove rigorous upper and lower bounds for the elastic energy that scales like the thickness squared. In particular we show that are only two types of global minimizers -- deformations that remain flat and saddle shaped deformations with isolated regions of stretching near the edge of the annulus. We also show that there exist local minimizers with a periodic profile that have additional boundary layers near their lines of inflection. These additional boundary layers are a new phenomenon in thin elastic sheets and are necessary to regularize jump discontinuities in the azimuthal curvature across lines of inflection. We rigorously derive scaling laws for the width of these boundary layers as a function of the thickness of the sheet

    A non-autonomous stochastic discrete time system with uniform disturbances

    Full text link
    The main objective of this article is to present Bayesian optimal control over a class of non-autonomous linear stochastic discrete time systems with disturbances belonging to a family of the one parameter uniform distributions. It is proved that the Bayes control for the Pareto priors is the solution of a linear system of algebraic equations. For the case that this linear system is singular, we apply optimization techniques to gain the Bayesian optimal control. These results are extended to generalized linear stochastic systems of difference equations and provide the Bayesian optimal control for the case where the coefficients of these type of systems are non-square matrices. The paper extends the results of the authors developed for system with disturbances belonging to the exponential family

    A circular RNA generated from an intron of the insulin gene controls insulin secretion

    Get PDF
    Fine-tuning of insulin release from pancreatic β-cells is essential to maintain blood glucose homeostasis. Here, we report that insulin secretion is regulated by a circular RNA containing the lariat sequence of the second intron of the insulin gene. Silencing of this intronic circular RNA in pancreatic islets leads to a decrease in the expression of key components of the secretory machinery of β-cells, resulting in impaired glucose- or KCl-induced insulin release and calcium signaling. The effect of the circular RNA is exerted at the transcriptional level and involves an interaction with the RNA-binding protein TAR DNA-binding protein 43 kDa (TDP-43). The level of this circularized intron is reduced in the islets of rodent diabetes models and of type 2 diabetic patients, possibly explaining their impaired secretory capacity. The study of this and other circular RNAs helps understanding β-cell dysfunction under diabetes conditions, and the etiology of this common metabolic disorder

    The role of asymmetric interactions on the effect of habitat destruction in mutualistic networks

    Get PDF
    Plant-pollinator mutualistic networks are asymmetric in their interactions: specialist plants are pollinated by generalist animals, while generalist plants are pollinated by a broad involving specialists and generalists. It has been suggested that this asymmetric ---or disassortative--- assemblage could play an important role in determining the equal susceptibility of specialist and generalist plants under habitat destruction. At the core of the argument lies the observation that specialist plants, otherwise candidates to extinction, could cope with the disruption thanks to their interaction with generalist pollinators. We present a theoretical framework that supports this thesis. We analyze a dynamical model of a system of mutualistic plants and pollinators, subject to the destruction of their habitat. We analyze and compare two families of interaction topologies, ranging from highly assortative to highly disassortative ones, as well as real pollination networks. We found that several features observed in natural systems are predicted by the mathematical model. First, there is a tendency to increase the asymmetry of the network as a result of the extinctions. Second, an entropy measure of the differential susceptibility to extinction of specialist and generalist species show that they tend to balance when the network is disassortative. Finally, the disappearance of links in the network, as a result of extinctions, shows that specialist plants preserve more connections than the corresponding plants in an assortative system, enabling them to resist the disruption.Comment: 14 pages, 7 figure

    Transcriptome analyses identify five transcription factors differentially expressed in the hypothalamus of post-versus prepubertal Brahman heifers

    Get PDF
    Puberty onset is a developmental process influenced by genetic determinants, environment, and nutrition. Mutations and regulatory gene networks constitute the molecular basis for the genetic determinants of puberty onset. The emerging knowledge of these genetic determinants presents opportunities for innovation in the breeding of early pubertal cattle. This paper presents new data on hypothalamic gene expression related to puberty in Bos indicus (Brahman) in age-and weight-matched heifers. Six postpubertal heifers were compared with 6 prepubertal heifers using whole-genome RNA sequencing methodology for quantification of global gene expression in the hypothalamus. Five transcription factors (TF) with potential regulatory roles in the hypothalamus were identified in this experiment: E2F8, NFAT5, SIX5, ZBTB38, and ZNF605. These TF genes were significantly differentially expressed in the hypothalamus of postpubertal versus prepubertal heifers and were also identified as significant according to the applied regulatory impact factor metric (P < 0.05). Two of these 5 TF, ZBTB38 and ZNF605, were zinc fingers, belonging to a gene family previously reported to have a central regulatory role in mammalian puberty. The SIX5 gene belongs to the family of homologues of Drosophila sine oculis (SIX) genes implicated in transcriptional regulation of gonadotrope gene expression. Tumor-related genes such as E2F8 and NFAT5 are known to affect basic cellular processes that are relevant in both cancer and developmental processes. Mutations in NFAT5 were associated with puberty in humans. Mutations in these TF, together with other genetic determinants previously discovered, could be used in genomic selection to predict the genetic merit of cattle (i.e., the likelihood of the offspring presenting earlier than average puberty for Brahman). Knowledge of key mutations involved in genetic traits is an advantage for genomic prediction because it can increase its accuracy

    A circular RNA generated from an intron of the insulin gene controls insulin secretion.

    Get PDF
    Fine-tuning of insulin release from pancreatic β-cells is essential to maintain blood glucose homeostasis. Here, we report that insulin secretion is regulated by a circular RNA containing the lariat sequence of the second intron of the insulin gene. Silencing of this intronic circular RNA in pancreatic islets leads to a decrease in the expression of key components of the secretory machinery of β-cells, resulting in impaired glucose- or KCl-induced insulin release and calcium signaling. The effect of the circular RNA is exerted at the transcriptional level and involves an interaction with the RNA-binding protein TAR DNA-binding protein 43 kDa (TDP-43). The level of this circularized intron is reduced in the islets of rodent diabetes models and of type 2 diabetic patients, possibly explaining their impaired secretory capacity. The study of this and other circular RNAs helps understanding β-cell dysfunction under diabetes conditions, and the etiology of this common metabolic disorder

    Isolation and characterization of potent antifungal strains of the Streptomyces violaceusniger clade active against Candida albicans

    Get PDF
    Streptomyces strains were isolated from a sagebrush rhizosphere soil sample on humic acid vitamin (HV) agar and water yeast extract (WYE) agar supplemented with 1.5% (w/w) phenol as a selective medium. Acidic, neutral and alkaline pH conditions were also used in the isolation procedures. The phenol treatment reduced the numbers of both actinomycetes and non-actinomycetes on plates under all three pH conditions. From phenol-amended HV and WYE agar, 16 strains were isolated in pure culture; 14 from the HV agar and two from the WYE agar. All the isolates were tested for their antifungal activities against Pythium ultimum P8 and five yeast strains, including two antifungal drug-resistant Candida albicans strains. HV isolates that showed broad-spectrum antifungal antibiotic activities were all found to be members of the Streptomyces violaceusniger clade, while those that did not were non-clade members. The phenol treatment was not selective for S. violaceusniger clade members. Therefore, we tested the spores of both S. violaceusniger clade and non-clade members using two biocides, phenol and hydrogen peroxide, as selection agents. Spores of non-clade members, such as S. coelicolor M145 and S. lividans TK 21, survived these two biocides just as well as S. violaceusniger clade members. Thus, in our hands, biocide resistance was not S. violaceusniger clade specific as previously reported. However, isolates showing broad-spectrum antifungal and antiyeast activity were all members of the clade. We conclude that screening of isolates for broad-spectrum antifungal/antiyeast activity is the preferred method of isolating S. violaceusniger clade strains rather than biocide-based selection. Phylogenetic analysis of the phenol-resistant isolates revealed that the HV isolates that exhibited broad-spectrum antifungal antibiotic activity were all clustered and closely related to the S. violaceusniger clade, while the isolates that did not exhibit antifungal antibiotic activity were all non-clade members
    corecore