724 research outputs found

    The Martian sources of the SNC meteorites (two, not one), and what can and can't be learned from the SNC meteorites

    Get PDF
    The SNC meteorites, which almost certainly originate in the Martian crust, have been inferred to come from a single impact crater site, but no known crater fits all criteria. Formation at two separate sites (S from one, NC from the other) is more consistent with the sum of petrologic, geochronologic, and cosmochronologic data. If the source craters for the SNC meteorites can be located, Mars science will advance considerably. However, many significant questions cannot be answered by the SNC meteorites. These questions await a returned sample

    Hot Rocks! Near-Infrared Reflectances (and Emissivities) or Rocks at Venus Surface Temperatures

    Get PDF
    Venus surface can be viewed in emission through a few near-infrared (NIR) spectral windows (1 m) in its relatively opaque atmosphere [1]. Venus surface shows NIR emissivities that correlate with surface geology [2-4], and these emissivity variations are interpreted as differences in surface rock type (mafic vs. silicic) and/or extent of weathering (Fe2+ silicates vs. Fe3+-oxide-coated). To understand and quantify the observed variations in NIR emissivity, high-temperature (T) emissivity can be measured directly [5,6]. For example, emissivities of basalts in the wavelength range 0.85 1.2 m are ~0.95 [5-8]. This can be tested by measureing reflectance, because Kirchoffs Law holds that emissivity (e) = 1 reflectance (r). The r of basalt in the NIR is ~0.05 [o] consistent with a NIR e of ~0.95 [5-8]. High-T NIR es of silicic igneous rocks (granitic, rhyolite) have been reported to be 0.8-0.9 [5,6], which is inconsistent with r values of 0.3-0.8 of such rocks at 25C [9,10]. However, these measurements have been updated [7,8] and are consistent with the results here (see below and Fig. 3)

    Lunar Meteorite NWA 11421: X-Ray Tomogrpahy & Preliminary Petrology

    Get PDF
    Lunar meteorite NWA 11421 is provisionally placed with the "NWA 8046 clan" of similar stones (the "Algerian Megafind") of which at least 33 kg has been recovered. NWA 11421 and pairs are feldspathic regolith breccias, with angular fragments of plagioclase-rich clasts in a dark glassy matrix. Most members of this clan contain < 5.5% FeO and < 0.3 ppm Th. To date, there have been no petrographic studies reported of these lunar meteorites. An 11.7 gm sample of NWA 11421 was purchased from Marcin Cimala, holder of the main mass - this sample is consistent in all respects with the formal meteorite description. This particular sample was selected because it appeared to contain a fragment of dunite

    A Comprehensive Analysis on the Pion-Photon Transition Form Factor Beyond the Leading Fock State

    Full text link
    We perform a comprehensive analysis of the pion-photon transition form factor Fπγ(Q2)F_{\pi \gamma}(Q^2) involving the transverse momentum corrections with the present CLEO experimental data, in which the contributions beyond the leading Fock state have been taken into consideration. As is well-known, the leading Fock-state contribution dominates of Fπγ(Q2)F_{\pi \gamma}(Q^2) at large momentum transfer (Q2Q^2) region. One should include the contributions beyond the leading Fock state in small Q2Q^2 region. In this paper, we construct a phenomenological expression to estimate the contributions beyond the leading Fock state based on its asymptotic behavior at Q20Q^2\to0. Our present theoretical results agree well with the experimental data in the whole Q2Q^2 region. Then, we extract some useful information of the pionic leading twist-2 distribution amplitude (DA) by comparing our results of Fπγ(Q2)F_{\pi \gamma}(Q^2) with the CLEO data. By taking best fit, we have the DA moments, a2(μ02)=0.0020.054+0.063a_2(\mu_0^2)=0.002^{+0.063}_{-0.054}, a4(μ02)=0.0220.012+0.026a_4(\mu_0^2)=-0.022_{-0.012}^{+0.026} and all of higher moments, which are closed to the asymptotic-like behavior of the pion wavefunction.Comment: 25 pages, 7 figures. Typo error correcte

    Phase Equilibria Modeling of Low-grade Metamorphic Martian Rocks

    Get PDF
    Hydrous phases have been identified to be a significant component of martian mineralogy. Particularly prehnite, zeolites, and serpentine are evidence for low‐grade metamorphic reactions at elevated temperatures in mafic and ultramafic protoliths. Their presence suggests that at least part of the martian crust is sufficiently hydrated for low‐grade metamorphic reactions to occur. A detailed analysis of changes in mineralogy with variations in fluid content and composition along possible martian geotherms can contribute to determine the conditions required for subsurface hydrous alteration, fluid availability and rock properties in the martian crust. In this study, we use phase equilibria models to explore low‐grade metamorphic reactions covering a pressure‐temperature range of 0‐0.5 GPa and 150‐450 °C for several martian protolith compositions and varying fluid content. Our models replicate the detected low‐grade metamorphic/hydrothermal mineral phases like prehnite, chlorite, analcime, unspecified zeolites, and serpentine. Our results also suggest that actinolite should be a part of lower‐grade metamorphic assemblages, but actinolite may not be detected in reflectance spectra for several reasons. By gradually increasing the water content in the modeled whole rock composition, we can estimate the amount of water required to precipitate low‐grade metamorphic phases. Mineralogical constraints do not necessarily require an elevated geothermal gradient for the formation of prehnite. However, restricted crater excavation depths even for large impact craters are not likely sampling prehnite along colder gradients, either suggesting a geotherm of ~ 20 °C/km in the Noachian or an additional heat source such as hydrothermal or magmatic activity

    A Unique Amphibole- and Magnetite-Rich Carbonaceous Chondrite from Almahata Sitta

    Get PDF
    Almahata Sitta (AhS) 202 from the UoK collection represents a clast from the polymict breccia asteroid 2008 TC3. AhS 202 was recognized as a unique carbonaceous chondrite (CC) with a high magnetite content. Here we report that it also contains a significant amount of amphibole, a mineral that is very rare in chondrites and has not previously been reported in significant abundance in a CC. We present new petrographic, oxygen isotope, and micro-FTIR data. We discuss petrogenesis and possible relationships to known CC

    Lu-Hf and Sm-Nd Isotopic Studies of Shergottites and Nakhlites: Implications for Martian Mantle Sources

    Get PDF
    We present a new Lu-Hf and Sm-Nd isotope systematics study of four enriched shergottites (Zagami, Shergotty, NWA856 and Los Angeles), and three nakhlites (Nakhla, MIL03346 and Yamato 000593) in order to further understand processes occurring during the early differentiation of Mars and the crystallization of its magma ocean. Two fractions of the terrestrial petrological analogue of nakhlites, the Archaean Theo's flow (Ontario, Canada) were also measured. The coupling of Nd and Hf isotopes provide direct insights on the mineralogy of the melt sources. In contrast to Sm/Nd, Lu/Hf ratios can be very large in minerals such as garnet. Selective partial melting of garnet bearing mantle sources can therefore lead to characteristic Lu/Hf signatures that can be recognized with Hf-176/Hf-177Hf ratios
    corecore