270 research outputs found
“Not in the mood”: The fear of being laughed at is better predicted by humor temperament traits than diagnosis in neurodevelopmental conditions
BACKGROUND: Research has shown that autistic individuals seem to be more prone to develop gelotophobia (i.e., the fear of being laughed at) than typically developing individuals. The goals of the present study were to discover whether the high levels of gelotophobia found in autism in previous studies were replicated here, to expand the research to Down syndrome (DS) and Williams syndrome (WS), and to assess the relation between individual differences and social impairments, affective predispositions, and humor temperament. METHODS: Questionnaires were distributed to parents of autistic individuals (N = 48), individuals with DS (N = 139), and individuals with WS (N = 43) aged between 5 and 25 years old. RESULTS: Autistic individuals were shown to frequently experience at least a slight level of gelotophobia (45%), compared to only 6% of individuals with DS and 7% of individuals with WS. Interestingly, humorless temperament traits (i.e., seriousness and bad mood) manifested as the strongest predictors of gelotophobia. This relation even transcended group differences. CONCLUSION: The results confirm that gelotophobia seems to be particularly concerning for autistic individuals, whereas individuals with DS and WS seem to be more protected from developing such a fear. Moreover, it appears that gelotophobia seems to be more linked to high seriousness and irritability than diagnosis
Atmospheric Muon Flux at Sea Level, Underground, and Underwater
The vertical sea-level muon spectrum at energies above 1 GeV and the
underground/underwater muon intensities at depths up to 18 km w.e. are
calculated. The results are particularly collated with a great body of the
ground-level, underground, and underwater muon data. In the hadron-cascade
calculations, the growth with energy of inelastic cross sections and pion,
kaon, and nucleon generation in pion-nucleus collisions are taken into account.
For evaluating the prompt muon contribution to the muon flux, we apply two
phenomenological approaches to the charm production problem: the recombination
quark-parton model and the quark-gluon string model. To solve the muon
transport equation at large depths of homogeneous medium, a semi-analytical
method is used. The simple fitting formulas describing our numerical results
are given. Our analysis shows that, at depths up to 6-7 km w. e., essentially
all underground data on the muon intensity correlate with each other and with
predicted depth-intensity relation for conventional muons to within 10%.
However, the high-energy sea-level data as well as the data at large depths are
contradictory and cannot be quantitatively decribed by a single nuclear-cascade
model.Comment: 47 pages, REVTeX, 15 EPS figures included; recent experimental data
and references added, typos correcte
Synaptic vesicle release regulates pre-myelinating oligodendrocyte-axon interactions in a neuron subtype-specific manner
Oligodendrocyte-lineage cells are central nervous system (CNS) glia that perform multiple functions including the selective myelination of some but not all axons. During myelination, synaptic vesicle release from axons promotes sheath stabilization and growth on a subset of neuron subtypes. In comparison, it is unknown if pre-myelinating oligodendrocyte process extensions selectively interact with specific neural circuits or axon subtypes, and whether the formation and stabilization of these neuron–glia interactions involves synaptic vesicle release. In this study, we used fluorescent reporters in the larval zebrafish model to track pre-myelinating oligodendrocyte process extensions interacting with spinal axons utilizing in vivo imaging. Monitoring motile oligodendrocyte processes and their interactions with individually labeled axons revealed that synaptic vesicle release regulates the behavior of subsets of process extensions. Specifically, blocking synaptic vesicle release decreased the longevity of oligodendrocyte process extensions interacting with reticulospinal axons. Furthermore, blocking synaptic vesicle release increased the frequency that new interactions formed and retracted. In contrast, tracking the movements of all process extensions of singly-labeled oligodendrocytes revealed that synaptic vesicle release does not regulate overall process motility or exploratory behavior. Blocking synaptic vesicle release influenced the density of oligodendrocyte process extensions interacting with reticulospinal and serotonergic axons, but not commissural interneuron or dopaminergic axons. Taken together, these data indicate that alterations to synaptic vesicle release cause changes to oligodendrocyte-axon interactions that are neuron subtype specific
Non-Redundant Selector and Growth-Promoting Functions of Two Sister Genes, buttonhead and Sp1, in Drosophila Leg Development
The radically distinct morphologies of arthropod and tetrapod legs argue that these appendages do not share a common evolutionary origin. Yet, despite dramatic differences in morphology, it has been known for some time that transcription factors encoded by the Distalless (Dll)/Dlx gene family play a critical role in the development of both structures. Here we show that a second transcription factor family encoded by the Sp8 gene family, previously implicated in vertebrate limb development, also plays an early and fundamental role in arthropod leg development. By simultaneously removing the function of two Sp8 orthologs, buttonhead (btd) and Sp1, during Drosophila embryogenesis, we find that adult leg development is completely abolished. Remarkably, in the absence of these factors, transformations from ventral to dorsal appendage identities are observed, suggesting that adult dorsal fates become derepressed when ventral fates are eliminated. Further, we show that Sp1 plays a much more important role in ventral appendage specification than btd and that Sp1 lies genetically upstream of Dll. In addition to these selector-like gene functions, Sp1 and btd are also required during larval stages for the growth of the leg. Vertebrate Sp8 can rescue many of the functions of the Drosophila genes, arguing that these activities have been conserved, despite more than 500 million years of independent evolution. These observations suggest that an ancient Sp8/Dlx gene cassette was used in an early metazoan for primitive limb-like outgrowths and that this cassette was co-opted multiple times for appendage formation in multiple animal phyla
E-Cadherin Acts as a Regulator of Transcripts Associated with a Wide Range of Cellular Processes in Mouse Embryonic Stem Cells
We have recently shown that expression of the cell adhesion molecule E-cadherin is required for LIF-dependent pluripotency of mouse embryonic stem (ES) cells.In this study, we have assessed global transcript expression in E-cadherin null (Ecad-/-) ES cells cultured in either the presence or absence of LIF and compared these to the parental cell line wtD3.We show that LIF has little effect on the transcript profile of Ecad-/- ES cells, with statistically significant transcript alterations observed only for Sp8 and Stat3. Comparison of Ecad-/- and wtD3 ES cells cultured in LIF demonstrated significant alterations in the transcript profile, with effects not only confined to cell adhesion and motility but also affecting, for example, primary metabolic processes, catabolism and genes associated with apoptosis. Ecad-/- ES cells share similar, although not identical, gene expression profiles to epiblast-derived pluripotent stem cells, suggesting that E-cadherin expression may inhibit inner cell mass to epiblast transition. We further show that Ecad-/- ES cells maintain a functional β-catenin pool that is able to induce β-catenin/TCF-mediated transactivation but, contrary to previous findings, do not display endogenous β-catenin/TCF-mediated transactivation. We conclude that loss of E-cadherin in mouse ES cells leads to significant transcript alterations independently of β-catenin/TCF transactivation
The Association between Mental Health and Violence among a Nationally Representative Sample of College Students from the United States
Objectives
Recent violent attacks on college campuses in the United States have sparked discussions regarding the prevalence of psychiatric disorders and the perpetration of violence among college students. While previous studies have examined the potential association between mental health problems and violent behavior, the overall pattern of findings flowing from this literature remain mixed and no previous studies have examined such associations among college students. Methods
The current study makes use of a nationally representative sample of 3,929 college students from the National Epidemiologic Study on Alcohol and Related Conditions (NESARC) to examine the prevalence of seven violent behaviors and 19 psychiatric disorder diagnoses tapping mood, anxiety, personality, and substance use disorders. Associations between individual and composite psychiatric disorder diagnoses and violent behaviors were also examined. Additional analyses were adjusted for the comorbidity of multiple psychiatric diagnoses. Results
The results revealed that college students were less likely to have engaged in violent behavior relative to the non-student sample, but a substantial portion of college students had engaged in violent behavior. Age- and sex-standardized prevalence rates indicated that more than 21% of college students reported at least one violent act. In addition, more than 36% of college students had at least one diagnosable psychiatric disorder. Finally, the prevalence of one or more psychiatric disorders significantly increased the odds of violent behavior within the college student sample. Conclusions
These findings indicate that violence and psychiatric disorders are prevalent on college campuses in the United States, though perhaps less so than in the general population. In addition, college students who have diagnosable psychiatric disorders are significantly more likely to engage in various forms of violent behavior
Characterization of an extracellular lipase and its chaperone from Ralstonia eutropha H16
Lipase enzymes catalyze the reversible hydrolysis of triacylglycerol to fatty acids and glycerol at the lipid–water interface. The metabolically versatile Ralstonia eutropha strain H16 is capable of utilizing various molecules containing long carbon chains such as plant oil, organic acids, or Tween as its sole carbon source for growth. Global gene expression analysis revealed an upregulation of two putative lipase genes during growth on trioleate. Through analysis of growth and activity using strains with gene deletions and complementations, the extracellular lipase (encoded by the lipA gene, locus tag H16_A1322) and lipase-specific chaperone (encoded by the lipB gene, locus tag H16_A1323) produced by R. eutropha H16 was identified. Increase in gene dosage of lipA not only resulted in an increase of the extracellular lipase activity, but also reduced the lag phase during growth on palm oil. LipA is a non-specific lipase that can completely hydrolyze triacylglycerol into its corresponding free fatty acids and glycerol. Although LipA is active over a temperature range from 10 °C to 70 °C, it exhibited optimal activity at 50 °C. While R. eutropha H16 prefers a growth pH of 6.8, its extracellular lipase LipA is most active between pH 7 and 8. Cofactors are not required for lipase activity; however, EDTA and EGTA inhibited LipA activity by 83 %. Metal ions Mg[superscript 2+], Ca[superscript 2+], and Mn[superscript 2+] were found to stimulate LipA activity and relieve chelator inhibition. Certain detergents are found to improve solubility of the lipid substrate or increase lipase-lipid aggregation, as a result SDS and Triton X-100 were able to increase lipase activity by 20 % to 500 %. R. eutropha extracellular LipA activity can be hyper-increased, making the overexpression strain a potential candidate for commercial lipase production or in fermentations using plant oils as the sole carbon source.Malaysia-MIT Biotechnology Partnership Programm
E-Cadherin Acts as a Regulator of Transcripts Associated with a Wide Range of Cellular Processes in Mouse Embryonic Stem Cells
We have recently shown that expression of the cell adhesion molecule E-cadherin is required for LIF-dependent pluripotency of mouse embryonic stem (ES) cells.In this study, we have assessed global transcript expression in E-cadherin null (Ecad-/-) ES cells cultured in either the presence or absence of LIF and compared these to the parental cell line wtD3.We show that LIF has little effect on the transcript profile of Ecad-/- ES cells, with statistically significant transcript alterations observed only for Sp8 and Stat3. Comparison of Ecad-/- and wtD3 ES cells cultured in LIF demonstrated significant alterations in the transcript profile, with effects not only confined to cell adhesion and motility but also affecting, for example, primary metabolic processes, catabolism and genes associated with apoptosis. Ecad-/- ES cells share similar, although not identical, gene expression profiles to epiblast-derived pluripotent stem cells, suggesting that E-cadherin expression may inhibit inner cell mass to epiblast transition. We further show that Ecad-/- ES cells maintain a functional β-catenin pool that is able to induce β-catenin/TCF-mediated transactivation but, contrary to previous findings, do not display endogenous β-catenin/TCF-mediated transactivation. We conclude that loss of E-cadherin in mouse ES cells leads to significant transcript alterations independently of β-catenin/TCF transactivation
- …