502 research outputs found
Quantum dynamics of the avian compass
The ability of migratory birds to orient relative to the Earth's magnetic
field is believed to involve a coherent superposition of two spin states of a
radical electron pair. However, the mechanism by which this coherence can be
maintained in the face of strong interactions with the cellular environment has
remained unclear. This Letter addresses the problem of decoherence between two
electron spins due to hyperfine interaction with a bath of spin 1/2 nuclei.
Dynamics of the radical pair density matrix are derived and shown to yield a
simple mechanism for sensing magnetic field orientation. Rates of dephasing and
decoherence are calculated ab initio and found to yield millisecond coherence
times, consistent with behavioral experiments
Macroscopic Dynamics of Multi-Lane Traffic
We present a macroscopic model of mixed multi-lane freeway traffic that can
be easily calibrated to empirical traffic data, as is shown for Dutch highway
data. The model is derived from a gas-kinetic level of description, including
effects of vehicular space requirements and velocity correlations between
successive vehicles. We also give a derivation of the lane-changing rates. The
resulting dynamic velocity equations contain non-local and anisotropic
interaction terms which allow a robust and efficient numerical simulation of
multi-lane traffic. As demonstrated by various examples, this facilitates the
investigation of synchronization patterns among lanes and effects of on-ramps,
off-ramps, lane closures, or accidents.Comment: For related work see
http://www.theo2.physik.uni-stuttgart.de/helbing.htm
Long-lived states in synchronized traffic flow. Empirical prompt and dynamical trap model
The present paper proposes a novel interpretation of the widely scattered
states (called synchronized traffic) stimulated by Kerner's hypotheses about
the existence of a multitude of metastable states in the fundamental diagram.
Using single vehicle data collected at the German highway A1, temporal velocity
patterns have been analyzed to show a collection of certain fragments with
approximately constant velocities and sharp jumps between them. The particular
velocity values in these fragments vary in a wide range. In contrast, the flow
rate is more or less constant because its fluctuations are mainly due to the
discreteness of traffic flow.
Subsequently, we develop a model for synchronized traffic that can explain
these characteristics. Following previous work (I.A.Lubashevsky, R.Mahnke,
Phys. Rev. E v. 62, p. 6082, 2000) the vehicle flow is specified by car
density, mean velocity, and additional order parameters and that are
due to the many-particle effects of the vehicle interaction. The parameter
describes the multilane correlations in the vehicle motion. Together with the
car density it determines directly the mean velocity. The parameter , in
contrast, controls the evolution of only. The model assumes that
fluctuates randomly around the value corresponding to the car configuration
optimal for lane changing. When it deviates from this value the lane change is
depressed for all cars forming a local cluster. Since exactly the overtaking
manoeuvres of these cars cause the order parameter to vary, the evolution
of the car arrangement becomes frozen for a certain time. In other words, the
evolution equations form certain dynamical traps responsible for the long-time
correlations in the synchronized mode.Comment: 16 pages, 10 figures, RevTeX
Macroscopic traffic models from microscopic car-following models
We present a method to derive macroscopic fluid-dynamic models from
microscopic car-following models via a coarse-graining procedure. The method is
first demonstrated for the optimal velocity model. The derived macroscopic
model consists of a conservation equation and a momentum equation, and the
latter contains a relaxation term, an anticipation term, and a diffusion term.
Properties of the resulting macroscopic model are compared with those of the
optimal velocity model through numerical simulations, and reasonable agreement
is found although there are deviations in the quantitative level. The
derivation is also extended to general car-following models.Comment: 12 pages, 4 figures; to appear in Phys. Rev.
Congested Traffic States in Empirical Observations and Microscopic Simulations
We present data from several German freeways showing different kinds of
congested traffic forming near road inhomogeneities, specifically lane
closings, intersections, or uphill gradients. The states are localized or
extended, homogeneous or oscillating. Combined states are observed as well,
like the coexistence of moving localized clusters and clusters pinned at road
inhomogeneities, or regions of oscillating congested traffic upstream of nearly
homogeneous congested traffic. The experimental findings are consistent with a
recently proposed theoretical phase diagram for traffic near on-ramps [D.
Helbing, A. Hennecke, and M. Treiber, Phys. Rev. Lett. {\bf 82}, 4360 (1999)].
We simulate these situations with a novel continuous microscopic single-lane
model, the ``intelligent driver model'' (IDM), using the empirical boundary
conditions. All observations, including the coexistence of states, are
qualitatively reproduced by describing inhomogeneities with local variations of
one model parameter.
We show that the results of the microscopic model can be understood by
formulating the theoretical phase diagram for bottlenecks in a more general
way. In particular, a local drop of the road capacity induced by parameter
variations has practically the same effect as an on-ramp.Comment: Now published in Phys. Rev. E. Minor changes suggested by a referee
are incorporated; full bibliographic info added. For related work see
http://www.mtreiber.de/ and http://www.helbing.org
Life events and hemodynamic stress reactivity in the middle-aged and elderly
Recent versions of the reactivity hypothesis, which consider it to be the product of stress exposure and exaggerated haemodynamic reactions to stress that confers cardiovascular disease risk, assume that reactivity is independent of the experience of stressful life events. This assumption was tested in two substantial cohorts, one middle-aged and one elderly. Participants had to indicate from a list of major stressful life events up to six they had experienced in the previous two years. They were also asked to rate how disruptive and stressful they were, at the time of occurrence and now. Blood pressure and pulse rate were measured at rest and in response to acute mental stress. Those who rated the events as highly disruptive at the time of exposure and currently exhibited blunted systolic blood pressure reactions to acute stress. The present results suggest that acute stress reactivity may not be independent of stressful life events experience
Towards a Macroscopic Modelling of the Complexity in Traffic Flow
We present a macroscopic traffic flow model that extends existing fluid-like
models by an additional term containing the second derivative of the safe
velocity. Two qualitatively different shapes of the safe velocity are explored:
a conventional Fermi-type function and a function exhibiting a plateau at
intermediate densities. The suggested model shows an extremely rich dynamical
behaviour and shows many features found in real-world traffic data.Comment: submitted to Phys. Rev.
Temporal Modulation of the Control Parameter in Electroconvection in the Nematic Liquid Crystal I52
I report on the effects of a periodic modulation of the control parameter on
electroconvection in the nematic liquid crystal I52. Without modulation, the
primary bifurcation from the uniform state is a direct transition to a state of
spatiotemporal chaos. This state is the result of the interaction of four,
degenerate traveling modes: right and left zig and zag rolls. Periodic
modulations of the driving voltage at approximately twice the traveling
frequency are used. For a large enough modulation amplitude, standing waves
that consist of only zig or zag rolls are stabilized. The standing waves
exhibit regular behavior in space and time. Therefore, modulation of the
control parameter represents a method of eliminating spatiotemporal chaos. As
the modulation frequency is varied away from twice the traveling frequency,
standing waves that are a superposition of zig and zag rolls, i.e. standing
rectangles, are observed. These results are compared with existing predictions
based on coupled complex Ginzburg-Landau equations
A stochastic cellular automaton model for traffic flow with multiple metastable states
A new stochastic cellular automaton (CA) model of traffic flow, which
includes slow-to-start effects and a driver's perspective, is proposed by
extending the Burgers CA and the Nagel-Schreckenberg CA model. The flow-density
relation of this model shows multiple metastable branches near the transition
density from free to congested traffic, which form a wide scattering area in
the fundamental diagram. The stability of these branches and their velocity
distributions are explicitly studied by numerical simulations.Comment: 11 pages, 20 figures, submitted for publicatio
Road Network Simulation Using FLAME GPU
Demand for high performance road network simulation is increasing due to the need for improved traffic management to cope with the globally increasing number of road vehicles and the poor capacity utilisation of existing infrastructure. This paper demonstrates FLAME GPU as a suitable Agent Based Simulation environment for road network simulations, capable of coping with the increasing demands on road network simulation. Gipps’ car following model is implemented and used to demonstrate the performance of simulation as the problem size is scaled. The performance of message communication techniques has been evaluated to give insight into the impact of runtime generated data structures to improve agent communication performance. A custom visualisation is demonstrated for FLAME GPU simulations and the techniques used are described
- …