183 research outputs found

    Heart failure and excess mortality after aortic valve replacement in aortic stenosis

    Get PDF
    INTRODUCTION: In aortic stenosis (AS), the heart transitions from adaptive compensation to an AS cardiomyopathy and eventually leads to decompensation with heart failure. Better understanding of the underpinning pathophysiological mechanisms is required in order to inform strategies to prevent decompensation. AREAS COVERED: In this review, we therefore aim to appraise the current pathophysiological understanding of adaptive and maladaptive processes in AS, appraise potential avenues of adjunctive therapy before or after AVR and highlight areas of further research in the management of heart failure post AVR. EXPERT OPINION: Tailored strategies for the timing of intervention accounting for individual patient's response to the afterload insult are underway, and promise to guide better management in the future. Further clinical trials of adjunctive pharmacological and device therapy to either cardioprotect prior to intervention or promote reverse remodelling and recovery after intervention are needed to mitigate the risk of heart failure and excess mortality

    Myocardial extracellular volume quantification by cardiovascularagn magnetic resonance and computed tomography

    Get PDF
    Purpose of review This review article discusses the evolution of extracellular volume (ECV) quantification using both cardiovascular magnetic resonance (CMR) and computed tomography (CT). Recent findings Visualizing diffuse myocardial fibrosis is challenging and until recently, was restricted to the domain of the pathologist. CMR and CT both use extravascular, extracellular contrast agents, permitting ECV measurement. The evidence base around ECV quantification by CMR is growing rapidly and just starting in CT. In conditions with high ECV (amyloid, oedema and fibrosis), this technique is already being used clinically and as a surrogate endpoint. Non-invasive diffuse fibrosis quantification is also generating new biological insights into key cardiac diseases. Summary CMR and CT can estimate ECV and in turn diffuse myocardial fibrosis, obviating the need for invasive endomyocardial biopsy. CT is an attractive alternative to CMR particularly in those individuals with contraindications to the latter. Further studies are needed, particularly in CT

    Myocardial Approximate Spin-lock Dispersion Mapping using a Simultaneous T2 and TRAFF2 Mapping at 3T MRI

    Get PDF
    Ischemic heart disease (IHD) is one of the leading causes of death worldwide. Myocardial infarction (MI) represents a third of all IHD cases, and cardiac magnetic resonance imaging (MRI) is often used to assess its damage to myocardial viability. Late gadolinium enhancement (LGE) is the current gold standard, but the use of gadolinium-based agents limits the clinical applicability in some patients. Spin-lock (SL) dispersion has recently been proposed as a promising non-contrast biomarker for the assessment of MI. However, at 3T, the required range of SL preparations acquired at different amplitudes suffers from specific absorption rate (SAR) limitations and off-resonance artifacts. Relaxation Along a Fictitious Field (RAFF) is an alternative to SL preparations with lower SAR requirements, while still sampling relaxation in the rotating frame. In this study, a single breath-hold simultaneous TRAFF2 and T2 mapping sequence is proposed for SL dispersion mapping at 3T. Excellent reproducibility (coefficient of variations lower than 10%) was achieved in phantom experiments, indicating good intrascan repeatability. The average myocardial TRAFF2, T2, and SL dispersion obtained with the proposed sequence (68.0±10.7 ms, 44.0±4.0 ms, and 0.4±0.2 ×10-4 s2, respectively) were comparable to the reference methods (62.7±11.7 ms, 41.2±2.4 ms, and 0.3±0.2x 10-4s2, respectively). High visual map quality, free of B0 and B1+ related artifacts, for T2, TRAFF2, and SL dispersion maps were obtained in phantoms and in vivo, suggesting promise in clinical use at 3T. Clinical relevance - and imaging promises non-contrast assessment of scar and focal fibrosis in a single breath-hold using approximate spin-lock dispersion mapping

    Improved reproducibility for myocardial ASL: Impact of physiological and acquisition parameters

    Get PDF
    PURPOSE: To investigate and mitigate the influence of physiological and acquisition-related parameters on myocardial blood flow (MBF) measurements obtained with myocardial Arterial Spin Labeling (myoASL). METHODS: A Flow-sensitive Alternating Inversion Recovery (FAIR) myoASL sequence with bSSFP and spoiled GRE (spGRE) readout is investigated for MBF quantification. Bloch-equation simulations and phantom experiments were performed to evaluate how variations in acquisition flip angle (FA), acquisition matrix size (AMS), heart rate (HR) and blood T 1 T1 {\mathrm{T}}_1 relaxation time ( T 1 , B T1,B {\mathrm{T}}_{1,B} ) affect quantification of myoASL-MBF. In vivo myoASL-images were acquired in nine healthy subjects. A corrected MBF quantification approach was proposed based on subject-specific T 1 , B T1,B {\mathrm{T}}_{1,B} values and, for spGRE imaging, subtracting an additional saturation-prepared baseline from the original baseline signal. RESULTS: Simulated and phantom experiments showed a strong dependence on AMS and FA ( R 2 R2 {R}^2 >0.73), which was eliminated in simulations and alleviated in phantom experiments using the proposed saturation-baseline correction in spGRE. Only a very mild HR dependence ( R 2 R2 {R}^2 >0.59) was observed which was reduced when calculating MBF with individual T 1 , B T1,B {\mathrm{T}}_{1,B} . For corrected spGRE, in vivo mean global spGRE-MBF ranged from 0.54 to 2.59 mL/g/min and was in agreement with previously reported values. Compared to uncorrected spGRE, the intra-subject variability within a measurement (0.60 mL/g/min), between measurements (0.45 mL/g/min), as well as the inter-subject variability (1.29 mL/g/min) were improved by up to 40% and were comparable with conventional bSSFP. CONCLUSION: Our results show that physiological and acquisition-related factors can lead to spurious changes in myoASL-MBF if not accounted for. Using individual T 1 , B T1,B {\mathrm{T}}_{1,B} and a saturation-baseline can reduce these variations in spGRE and improve reproducibility of FAIR-myoASL against acquisition parameters

    Cardiac Computed Tomography: Application in Valvular Heart Disease

    Get PDF
    The incidence and prevalence of valvular heart disease (VHD) is increasing and has been described as the next cardiac epidemic. Advances in imaging and therapeutics have revolutionized how we assess and treat patients with VHD. Although echocardiography continues to be the first-line imaging modality to assess the severity and the effects of VHD, advances in cardiac computed tomography (CT) now provide novel insights into VHD. Transcatheter valvular interventions rely heavily on CT guidance for procedural planning, predicting and detecting complications, and monitoring prosthesis. This review focuses on the current role and future prospects of CT in the assessment of aortic and mitral valves for transcatheter interventions, prosthetic valve complications such as thrombosis and endocarditis, and assessment of the myocardium

    Hypertrophic cardiomyopathy: insights from extracellular volume mapping

    Get PDF
    Hypertrophic cardiomyopathy (HCM) is a genetic cardiac disease characterized by myocardial hypertrophy and fibrosis. The phenotypic expression ranges from asymptomatic patients to heart failure and sudden death.1 Disease progression and relationship between hypertrophy and fibrosis are not well understood. Extracellular volume fraction (ECV) mapping on cardiovascular magnetic resonance (CMR) can demonstrate pixel-by-pixel ECV elevation (focal or diffuse fibrosis) or reduction (cellular hypertrophy).2 Furthermore, it has been shown that physical training induces remodelling of both heart and vasculature.3,4 In particular, it has been shown that hypertrophied myocardium in athletes has lower ECV, suggesting that cardiac athletic adaptation is an adaptive one caused predominantly by cellular rather than interstitial expansion.4 Hypothesizing that ECV mapping can reveal both differential responses of left ventricular hypertrophy (LVH), we explored the distribution of ECV in HCM

    Cardiac Fibrosis in heart failure: Focus on non-invasive diagnosis and emerging therapeutic strategies

    Get PDF
    Heart failure is a leading cause of mortality and hospitalization worldwide. Cardiac fibrosis, resulting from the excessive deposition of collagen fibers, is a common feature across the spectrum of conditions converging in heart failure. Eventually, either reparative or reactive in nature, in the long-term cardiac fibrosis contributes to heart failure development and progression and is associated with poor clinical outcomes. Despite this, specific cardiac antifibrotic therapies are lacking, making cardiac fibrosis an urgent unmet medical need. In this context, a better patient phenotyping is needed to characterize the heterogenous features of cardiac fibrosis to advance toward its personalized management. In this review, we will describe the different phenotypes associated with cardiac fibrosis in heart failure and we will focus on the potential usefulness of imaging techniques and circulating biomarkers for the non-invasive characterization and phenotyping of this condition and for tracking its clinical impact. We will also recapitulate the cardiac antifibrotic effects of existing heart failure and non-heart failure drugs and we will discuss potential strategies under preclinical development targeting the activation of cardiac fibroblasts at different levels, as well as targeting additional extracardiac processes

    Assessment of Microvascular Disease in Heart and Brain by MRI: Application in Heart Failure with Preserved Ejection Fraction and Cerebral Small Vessel Disease

    Get PDF
    The objective of this review is to investigate the commonalities of microvascular (small vessel) disease in heart failure with preserved ejection fraction (HFpEF) and cerebral small vessel disease (CSVD). Furthermore, the review aims to evaluate the current magnetic resonance imaging (MRI) diagnostic techniques for both conditions. By comparing the two conditions, this review seeks to identify potential opportunities to improve the understanding of both HFpEF and CSVD
    corecore