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Abstract: The objective of this review is to investigate the commonalities of microvascular (small
vessel) disease in heart failure with preserved ejection fraction (HFpEF) and cerebral small vessel
disease (CSVD). Furthermore, the review aims to evaluate the current magnetic resonance imaging
(MRI) diagnostic techniques for both conditions. By comparing the two conditions, this review seeks
to identify potential opportunities to improve the understanding of both HFpEF and CSVD.

Keywords: heart failure with preserved ejection fraction; cerebral small vessel disease; microvascular;
cardiovascular magnetic resonance; magnetic resonance imaging; neuroimaging

1. Introduction

There has been significant advancement in the diagnosis and management of heart
and brain diseases over the past decades; however, much of this progress has been on
macrovascular diseases of the large arteries and veins [1,2]. Microvascular disease (small
vessel disease), affecting the small arteries, arterioles, capillaries, and venules of the heart
and brain, presents a significant burden on patients and healthcare systems with costs
totalling billions each year [3,4], but remains incompletely understood. Damage to the
microvasculature can result in acute and chronic hypoperfusion that, depending on the
end organ, can differentially manifest in a variety of symptoms and disorders.

Heart failure with preserved ejection fraction (HFpEF) and cerebral small vessel
disease (CSVD) are complex conditions that present significant ongoing challenges in both
diagnosis and treatment. There are currently limited treatments for either condition, and
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the lack of effective interventions may be due in part to difficulties understanding the
underlying pathophysiology. Additionally, designing clinical trials for HFpEF and CSVD
has proven challenging [5,6] due to the heterogeneity of the patient populations and the
lack of reliable biomarkers. These factors highlight the need for continued research into
the underlying mechanisms of microvascular disease in HFpEF and CSVD, as well as the
development of reliable and validated diagnostic and therapeutic strategies.

The objective of this review is to investigate the commonalities of microvascular
disease in HFpEF and CSVD. Furthermore, the review aims to evaluate the current magnetic
resonance imaging (MRI) diagnostic techniques for both conditions. By comparing the two
conditions, this review seeks to gain a greater understanding of both and identify potential
opportunities to refine diagnostic approaches.

2. Background
2.1. HFpEF: Epidemiology and Clinical Presentation

HFpEF has been described as the, “single largest unmet need in cardiovascular
medicine,” and comprises 50% of HF cases and admissions [7,8]. HFpEF is currently
defined as the signs and symptoms of heart failure (HF), left ventricular ejection fraction
(LVEF) > 50%, and objective evidence of cardiac structural and/or functional abnormali-
ties consistent with diastolic dysfunction, raised filling pressures, or elevated natriuretic
peptides [8]. Patients present with cardinal features of HF including fatigue, dyspnoea,
and ankle swelling that is often accompanied by clinical signs of elevated jugular venous
pressure, and pulmonary and peripheral oedema.

The echocardiographic cutoff LVEF > 50% is somewhat arbitrary (and varies depend-
ing on the imaging modality used) and it is recognised that systolic dysfunction is present
in HFpEF; however, LVEF is relatively insensitive to detect mild impairment. Furthermore,
recent data [9] suggest that there are multiple subcategories within the HFpEF population
and other cardiovascular diseases (cardiac amyloidosis, hypertrophic cardiomyopathy, and
constrictive pericarditis) can present with HFpEF [10] but have an alternative underlying
pathophysiology with a specific therapeutic pathway. Serial myocardial biopsy study in
HFpEF [11] demonstrated 14% prevalence of cardiac amyloidosis, with further cardiovas-
cular magnetic resonance (CMR) study identifying alternative pathology in more than a
quarter of individuals presenting with HFpEF [10]. These studies highlight the need for
improved phenotyping and may in part explain the poor outcome of previous HFpEF trials,
as the standard echocardiography used as the primary enrolment modality struggles to
rigorously exclude cases of HFpEF with an alternative underlying mechanism that would
not respond to the trial intervention.

When compared to HF with reduced ejection fraction, HFpEF patients are typically
older, female, with a higher burden of diabetes, chronic kidney disease, obesity, and less
coronary artery disease. Prognosis is favourable compared to HF with reduced ejection
fraction [12], but there remains an excess mortality and significant reductions of quality
of life.

2.2. HFpEF: Pathophysiology

The underling pathophysiology of HFpEF is incompletely understood with multiple
models developed to explain the high diastolic left ventricular stiffness that is a cornerstone
finding. Paulus et al. [13] propose a systemic pro-inflammatory model, suggesting that
comorbidities, such as diabetes, obesity, and hypertension, cause coronary microvascular
inflammation and promote the expansion of the extracellular matrix with excess fibrotic
collagen and cardiomyocyte dysfunction (hypertrophy, impaired relaxation, and increased
stiffness). This model is supported by human biopsy study [14] in HFpEF patients, which
shows elevated levels of pro-inflammatory, fibrotic factors, and myofibroblasts compared to
controls. Also, plasma markers of inflammation (tumour necrosis factor α and interleukin-6)
are associated with incident risk of HFpEF [15].
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Complex imbalances in nitric oxide pathways associated with both pro-inflammatory
stress and mechanical stress (from hypertension and arterial stiffness) [16] are believed
to play a key role in HFpEF. Schiattarella et al. [16] recently demonstrated a model in
which HFpEF can be induced in mice with a high-fat diet and nitric oxide synthase in-
hibition. This may paradoxically increase the activity of inducible nitric oxide synthase,
which produces large quantities of nitric oxide [17] that may drive cardiomyocyte dys-
function. Specific inhibition of inducible nitric oxide synthase led to a less severe HFpEF
phenotype in their mouse model. Histologically, they describe cardiomyocyte hypertrophy,
extracellular matrix fibrosis, and disruption of myocardial capillaries with thickening of
the capillary basal lamina, oedematous endothelial cells, and capillary lumen narrowing
and irregularities with defective attempts at angiogenesis also leading to reduced density
(capillary rarefaction) and quality of vessels and, therefore, decreased myocardial oxygen
uptake [16,18,19].

Shiattarella et al. [16] demonstrated increased aortic stiffness and impaired coronary
artery endothelial function in their mouse model; this has long been hypothesized as a
contributing factor to the development of HFpEF. Elevated arterial stiffness is a key feature
in HFpEF and is elevated higher than age-matched controls and hypertensives [20]. This
elevated arterial stiffness, especially upon exercise [21], increases arterial pulse pressure and
afterload. It is hypothesised that the stiff arteries cannot adequately absorb the pulse energy,
and therefore, the excess energy is transferred through to the end organ microvascular
bed and tissue [22]. Additionally, the increased arterial stiffness leads to early arrival of
reflected waves to the heart increasing mid-to-late systolic load on the LV [23]. As the
reflected wave arrives early in systole, it cannot contribute to diastolic pressure; therefore,
coronary perfusion is impaired that may promote further ischaemia and tissue damage [24].

2.3. HFpEF: Non-MRI Assessment of Microvascular Disease

Several modalities, not limited to CMR, are available to assess microvascular disease in
the heart. Myocardial biopsy is not routinely undertaken in those presenting with HFpEF,
and to date, no modality can directly visualize the coronary microvascular system in vivo.
Therefore, current assessment is limited to indirect functional assessment of microvascular
function or examination of the downstream structural effects of microvascular disease on
the heart.

Echocardiography is the standard first-line investigation that assesses structural and
functional alterations of HFpEF including left ventricular structure (LVH and remodelling)
and function (diastolic relaxation and strain), left atrial dilatation, and elevated pulmonary
pressures that occur in response to increased filling pressures. Echocardiography has been
used to estimate myocardial blood flow (MBF) through Doppler assessment of the left
anterior descending artery on the parasternal short-axis view during hyperaemia and rest,
allowing the calculation of myocardial perfusion reserve (MPR) as the ratio between stress
and rest. In the PROMIS-HFpEF study [25], 75% of patients had reduced MPR (<2.5) as-
sessed via this method, and this was associated with increased natriuretic peptides’ reduced
longitudinal strain. Echocardiography is advantageous for its widespread availability and
inclusion in guidelines, harmonization between vendors (limited in strain imaging), and
high temporal resolution for diastology. However, it is limited by its imaging windows that
are often impaired in the presence of comorbidities (obesity, chronic lung disease), MPR
assessment not being standard workflow, and limited tissue characterization. Nearly 20%
of the PROMIS-HFpEF cohort could not have MPR assessed due to these issues.

Stress positron emission tomography (PET) is a well-established method of estimating
myocardial blood flow MBF and MPR and has shown similar results to echocardiography
with MPR being reduced when compared to controls and hypertensive LVH patients [26].
PET is limited by low spatial resolution, no tissue characterization, and ionizing radiation,
making it not suitable for longitudinal studies.

Invasive coronary angiography is advantageous in excluding significant coronary
artery disease and consistently demonstrates impaired MPR (often termed coronary flow
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reserve) [27] and elevated index of microcirculatory resistance (which is not available
on other modalities). It has elevated patient risk due to its invasive nature, and this
potentially introduces bias as patients are often opportunistically recruited when referred
for angiography for a clinical indication.

2.4. CSVD: Epidemiology and Clinical Presentation

Imaging markers of CSVD (Table 1) are presumed to be the result of damage to the
small blood vessels in the brain. They are intimately associated with the development of
vascular cognitive impairment and stroke, both ischaemic and haemorrhagic, but can also
be seen in cognitively normal elderly individuals [4,28]. CSVD is associated with recurrent
strokes, large-artery atherosclerosis [29], and dementia, where Alzheimer’s is the leading
cause of dementia [4].

Table 1. Imaging features of CSVD and pathological mechanisms: [30,31].

Imaging Feature Description and
Pathophysiology Clinical Image MRI Findings

Recent small subcortical
infarct (formerly lacunar

infarct):

Occlusion of perforating
artery causing distal infarction

of brain parenchyma [28].
Makes up ~25% of acute

ischaemic strokes.

Medicina 2023, 59, x FOR PEER REVIEW 4 of 22 
 

 

patients [26]. PET is limited by low spatial resolution, no tissue characterization, and ion-
izing radiation, making it not suitable for longitudinal studies. 

Invasive coronary angiography is advantageous in excluding significant coronary ar-
tery disease and consistently demonstrates impaired MPR (often termed coronary flow 
reserve) [27] and elevated index of microcirculatory resistance (which is not available on 
other modalities). It has elevated patient risk due to its invasive nature, and this poten-
tially introduces bias as patients are often opportunistically recruited when referred for 
angiography for a clinical indication. 

2.4. CSVD: Epidemiology and Clinical Presentation 
Imaging markers of CSVD (Table 1) are presumed to be the result of damage to the 

small blood vessels in the brain. They are intimately associated with the development of 
vascular cognitive impairment and stroke, both ischaemic and haemorrhagic, but can also 
be seen in cognitively normal elderly individuals [4,28]. CSVD is associated with recurrent 
strokes, large-artery atherosclerosis [29], and dementia, where Alzheimer’s is the leading 
cause of dementia [4]. 

Table 1. Imaging features of CSVD and pathological mechanisms: [30,31]. 

Imaging Feature 
Description and 
Pathophysiology Clinical Image MRI Findings 

Recent small subcortical 
infarct (formerly lacunar 

infarct): 

Occlusion of perforating 
artery causing distal 

infarction of brain 
parenchyma [28]. Makes up 

~25% of acute ischaemic 
strokes.  

 

 
 

≤20 mm 
Best identified on DWI 

Hyperintense: T2, FLAIR, 
DWI 

Hypointense: T1 
Isointense: T2*-GRE 

White matter hyperintensity: 

White matter demyelination 
resulting from multiple 

pathological insults 
including: chronic 

hypoperfusion, blood–brain 
barrier leakage, impaired 

amyloid clearance, and iron 
deposition [28] 

 

 
 

Variable in size 
Hyperintense: FLAIR, T2, 

and T2*-GRE 
Hypointense: T1 

Isointense: T1 

Lacune: 

CSF-filled cavity within the 
basal ganglia or white matter 

that is presumed to arise 
from prior small deep brain 

infarction [32] 
 

 

3–15 mm 
Best distinguished on FLAIR 
with hypointense centre and 

hyperintense rim 
Hyperintense: T2 

Hypointense: T1, DWI 
Isointense: DWI, T2*-GRE 

≤20 mm
Best identified on DWI

Hyperintense: T2, FLAIR,
DWI

Hypointense: T1
Isointense: T2*-GRE

White matter hyperintensity:

White matter demyelination
resulting from multiple

pathological insults including:
chronic hypoperfusion,

blood–brain barrier leakage,
impaired amyloid clearance,

and iron deposition [28]

Medicina 2023, 59, x FOR PEER REVIEW 4 of 22 
 

 

patients [26]. PET is limited by low spatial resolution, no tissue characterization, and ion-
izing radiation, making it not suitable for longitudinal studies. 

Invasive coronary angiography is advantageous in excluding significant coronary ar-
tery disease and consistently demonstrates impaired MPR (often termed coronary flow 
reserve) [27] and elevated index of microcirculatory resistance (which is not available on 
other modalities). It has elevated patient risk due to its invasive nature, and this poten-
tially introduces bias as patients are often opportunistically recruited when referred for 
angiography for a clinical indication. 

2.4. CSVD: Epidemiology and Clinical Presentation 
Imaging markers of CSVD (Table 1) are presumed to be the result of damage to the 

small blood vessels in the brain. They are intimately associated with the development of 
vascular cognitive impairment and stroke, both ischaemic and haemorrhagic, but can also 
be seen in cognitively normal elderly individuals [4,28]. CSVD is associated with recurrent 
strokes, large-artery atherosclerosis [29], and dementia, where Alzheimer’s is the leading 
cause of dementia [4]. 

Table 1. Imaging features of CSVD and pathological mechanisms: [30,31]. 

Imaging Feature 
Description and 
Pathophysiology Clinical Image MRI Findings 

Recent small subcortical 
infarct (formerly lacunar 

infarct): 

Occlusion of perforating 
artery causing distal 

infarction of brain 
parenchyma [28]. Makes up 

~25% of acute ischaemic 
strokes.  

 

 
 

≤20 mm 
Best identified on DWI 

Hyperintense: T2, FLAIR, 
DWI 

Hypointense: T1 
Isointense: T2*-GRE 

White matter hyperintensity: 

White matter demyelination 
resulting from multiple 

pathological insults 
including: chronic 

hypoperfusion, blood–brain 
barrier leakage, impaired 

amyloid clearance, and iron 
deposition [28] 

 

 
 

Variable in size 
Hyperintense: FLAIR, T2, 

and T2*-GRE 
Hypointense: T1 

Isointense: T1 

Lacune: 

CSF-filled cavity within the 
basal ganglia or white matter 

that is presumed to arise 
from prior small deep brain 

infarction [32] 
 

 

3–15 mm 
Best distinguished on FLAIR 
with hypointense centre and 

hyperintense rim 
Hyperintense: T2 

Hypointense: T1, DWI 
Isointense: DWI, T2*-GRE 

Variable in size
Hyperintense: FLAIR, T2, and

T2*-GRE
Hypointense: T1

Isointense: T1

Lacune:

CSF-filled cavity within the
basal ganglia or white matter
that is presumed to arise from

prior small deep brain
infarction [32]

Medicina 2023, 59, x FOR PEER REVIEW 4 of 22 
 

 

patients [26]. PET is limited by low spatial resolution, no tissue characterization, and ion-
izing radiation, making it not suitable for longitudinal studies. 

Invasive coronary angiography is advantageous in excluding significant coronary ar-
tery disease and consistently demonstrates impaired MPR (often termed coronary flow 
reserve) [27] and elevated index of microcirculatory resistance (which is not available on 
other modalities). It has elevated patient risk due to its invasive nature, and this poten-
tially introduces bias as patients are often opportunistically recruited when referred for 
angiography for a clinical indication. 

2.4. CSVD: Epidemiology and Clinical Presentation 
Imaging markers of CSVD (Table 1) are presumed to be the result of damage to the 

small blood vessels in the brain. They are intimately associated with the development of 
vascular cognitive impairment and stroke, both ischaemic and haemorrhagic, but can also 
be seen in cognitively normal elderly individuals [4,28]. CSVD is associated with recurrent 
strokes, large-artery atherosclerosis [29], and dementia, where Alzheimer’s is the leading 
cause of dementia [4]. 

Table 1. Imaging features of CSVD and pathological mechanisms: [30,31]. 

Imaging Feature 
Description and 
Pathophysiology Clinical Image MRI Findings 

Recent small subcortical 
infarct (formerly lacunar 

infarct): 

Occlusion of perforating 
artery causing distal 

infarction of brain 
parenchyma [28]. Makes up 

~25% of acute ischaemic 
strokes.  

 

 
 

≤20 mm 
Best identified on DWI 

Hyperintense: T2, FLAIR, 
DWI 

Hypointense: T1 
Isointense: T2*-GRE 

White matter hyperintensity: 

White matter demyelination 
resulting from multiple 

pathological insults 
including: chronic 

hypoperfusion, blood–brain 
barrier leakage, impaired 

amyloid clearance, and iron 
deposition [28] 

 

 
 

Variable in size 
Hyperintense: FLAIR, T2, 

and T2*-GRE 
Hypointense: T1 

Isointense: T1 

Lacune: 

CSF-filled cavity within the 
basal ganglia or white matter 

that is presumed to arise 
from prior small deep brain 

infarction [32] 
 

 

3–15 mm 
Best distinguished on FLAIR 
with hypointense centre and 

hyperintense rim 
Hyperintense: T2 

Hypointense: T1, DWI 
Isointense: DWI, T2*-GRE 

3–15 mm
Best distinguished on FLAIR
with hypointense centre and

hyperintense rim
Hyperintense: T2

Hypointense: T1, DWI
Isointense: DWI, T2*-GRE



Medicina 2023, 59, 1596 5 of 22

Table 1. Cont.

Imaging Feature Description and
Pathophysiology Clinical Image MRI Findings

Enlarged perivascular spaces:

Fluid-filled compartments
surrounding the small blood
vessels in the brain that allow
clearance of waste metabolites
from the brain. Enlargement
possibly arises from blockage

of the perivascular space
leading to accumulation of

waste products [33].
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CSVD may be asymptomatic and only be identified incidentally on neuroimaging.
CSVD has however been associated with various deleterious brain functions including
mood disturbance, incontinence, motor and gait disturbance, cognitive impairment, and
impaired executive function. Location of the lesion is thought to play an important role in
the associated impacted function, with lesions in the left frontotemporal, right parietal, and
left thalamus being at greatest risk of subsequent cognitive impairment [34]. CSVD is asso-
ciated with increasing age and the presence of traditional cardiovascular risk factors [35]
including hypertension, obesity, cigarette smoking, diabetes, obstructive sleep apnoea, and
chronic kidney disease.

CSVD is heterogenous and often coexists with Alzheimer’s disease or other forms of
dementia (mixed dementia), which can make diagnosis and trial design challenging [36,37].

2.5. CSVD: Pathophysiology

Despite advances in neuroimaging and biomarkers, the pathogenesis of CSVD is not
well understood, and much of the knowledge has been acquired through animal models
and postmortem examination [38]. Pathological findings of CSVD include loss of smooth
muscle cells, lipohyalinosis, thickening of the vessel wall, and narrowing of the lumen [39].
Multiple processes are proposed to be involved in the pathophysiology of CSVD, includ-
ing blood–brain barrier (BBB) dysfunction, changes in cerebral blood flow and perfusion,
microvascular rarefaction, inflammatory and immunological processes, endothelial and
pericyte dysfunction, and impaired clearance pathways. Yet, the exact pathways remain
unclear, but all these processes relate to dysfunction of parts of the neurovascular unit. The
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neurovascular unit [40] is a functional–anatomical entity that is composed of microvascular
endothelium, basal membrane, astrocytes, pericytes, microglia, neurons, and the extracel-
lular matrix around the vessels, and it regulates the close relationship between metabolic
demand and neuronal activity in the brain.

Disruption of the BBB [41] leads to an increased permeability and altered transport
of molecules between blood and brain and vice versa. Consequently, it can result in
dysfunction of the neurovascular unit, aberrant angiogenesis, brain hypoperfusion, and
inflammatory responses, eventually leading to progressive synaptic and neuronal dys-
function. A reduced cerebral blood flow [42] could cause hypoxia and consequently lead
to neuronal damage and reduction of microstructural integrity. Capillary architecture is
disrupted in CSVD with increased tortuosity of microvessels being vulnerable to blockage
by microemboli and decreased shear stress reducing nitric oxide synthase production [38].
Capillary rarefaction is hypothesised to occur due to active capillary regression [43], im-
paired angiogenesis [44], and endothelial dysfunction [38].

Inflammatory responses can lead to enhanced BBB disruption and direct damage of
brain tissue [45]. Endothelial dysfunction can induce brain damage via different mecha-
nisms, including loss of autoregulation and neurovascular coupling, BBB disruption, and
capillary rarefaction. The reduction of release of nitric oxide is an established marker
for endothelial dysfunction. The disruption of endothelial nitric oxide synthase, which
is responsible for much of nitric oxide production, and oxidative stress (i.e., imbalance
between formation of free oxygen species and defensive antioxidants) are believed to have a
significant impact on the development of CSVD [46]. Animal models of CSVD have shown
that mice deficient in nitric oxide exhibit cerebral hypoperfusion, increased oxidative stress,
microinfarction, microbleeds, and BBB leakage [47]. Pericytes, which are responsible for
controlling capillary tone and regulating blood flow, are reduced in models of CSVD. This
loss of pericytes can result in uneven blood flow, BBB leakage, and pericytes transition to
myofibroblasts responsible for scar formation [38]. Dysfunction of the brain waste clearance
systems might lead to accumulation of brain waste and subsequently cause tissue damage.

As in HFpEF, increased arterial stiffness and elevated pulse pressure may play a role
in transferring excess energy to the cerebral microvasculature and tissue. Increased arterial
stiffness and elevated pulse pressure have been associated with an increased burden of
WMH [48,49], cerebral microbleeds [22], and lacunar stroke [49].

2.6. CSVD: Non-MRI Assessment of Microvascular Disease

The imaging characterisation of CSVD is mainly based on morphological findings that
can be made visible by widely available standardized multicontrast MRI protocols, largely
avoiding the administration of gadolinium-based contrast agents. Computed tomography
(CT) lacks the enhanced soft-tissue characterization of MRI but can reliably identify lacunar
infarcts, cerebral atrophy, and the more advanced white matter lesions [28] and is the
first-line investigation in acute stroke [35]. CT can assess CBF and in CSVD patients,
but MRI is the preferred method [50] as it provides an enhanced soft-tissue assessment
and estimation of CBF in a single comprehensive study without ionizing radiation and
possible administration of iodine contrast medium. PET does not have the ability to identify
the morphological features of CSVD; it does, however, have a broad evidence base for
estimating CBF [51] and other related measures and can be useful in distinguishing CSVD
from Alzheimer’s and other neurodegenerative pathology [52].

2.7. Similarities and Differences of HFpEF and CSVD

On a broad scale, the heart and the brain share some similarities in both relationship
to their histology and vascular supply. Both are terminally differentiated organs with
limited ability to replicate or regenerate in the event of injury; furthermore, they require
disproportionate amounts of energy and oxygen relative to weight [38,53]. The brain,
despite being 2% of bodyweight, accounts for 20% of an individual’s energy at rest, while,
per gram, the heart requires the most oxygen of any organ in the body. Despite these high
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energy demands, both organs have limited energy stores, making them both vulnerable to
acute and chronic reductions in energy supply and oxygen. The vascular supply of both is
comparable to some extent with superficial major arteries that give off deep penetrating
arterioles and capillaries for tissue perfusion [54]. Perfusion, however, is fundamentally
different between the two organs. The contraction of the heart causes a cycle of diastolic
perfusion with systolic halting or reversal of flow as the intramyocardial pressures compress
the coronary vasculature, which does not occur in the brain. Another difference is the
more internal blood supply of the brain, through the perforating branches of the middle
cerebral arteries, which is prone to obstructions and characteristic for the deep locations of
the morphologic features of CSVD.

Both HFpEF and CSVD are prevalent in the elderly population and are often linked
to shared pro-inflammatory cardiovascular risk factors such as hypertension, diabetes,
and obesity. A comparison in the pathophysiology uncovers some overlap, suggesting
that imbalances in nitric oxide pathways may be a key mechanism in the development of
these disorders. Furthermore, a common characteristic in both HFpEF and CSVD is the
disturbance in the structure, function, and density of capillaries.

A key feature of HFpEF is its female preponderance [5], and in CSVD there is a
tendency to faster progression in females and potentially increased WMH burden in
relation to menopause and hot flushes [55,56]. Sex differences in CSVD can be challenging
to study, which may be a reflection on women being less likely to be recruited to trials, and
differing clinical presentation in cognitive impairment that may be overlooked [57].

2.8. MRI Techniques for Assessing Microvascular Disease

MRI is widely recognized as the gold-standard technique for assessing CSVD as it
provides high-resolution imaging of the brain that reveals the structure changes and abnor-
malities associated with CSVD including recent small subcortical infarcts (formerly lacunar
infarct), white matter hyperintensities (WMH), lacunes, enlarged perivascular spaces, cere-
bral microbleeds, and cortical cerebral microinfarction. The presumed pathophysiology and
imaging features of these are summarized in Figure 1. More recently, CMR has emerged
as a valuable tool for evaluating the structural, functional, and microvascular changes in
the heart and has been applied in the assessment of HFpEF. The use of advanced CMR
techniques including myocardial perfusion, T1 mapping, and late gadolinium enhance-
ment (LGE) can help to assess microvascular disease and provide valuable insight into
the pathophysiology of HFpEF and help guide in clinical decision-making. As previously
discussed, it is superior to other modalities at excluding myocardial diseases masquerading
as HFpEF [10].

2.9. CMR Assessment of HFpEF
2.9.1. Cardiac Structure

CMR has established itself as the gold-standard technique for assessing cardiac struc-
ture due to its high spatial resolution and freedom from geometric assumptions, which
makes it more sensitive to detecting the adverse remodeling seen in HFpEF and provides
superior reproducibility compared to echocardiography [58]. The higher precision and
reproducibility of CMR, compared to other modalities, makes it the preferred choice for
trial design as it allows small sample sizes, potentially offsetting its higher cost. Sequences
can be prescribed in unlimited planes for qualitative and quantitative assessment of cardiac
chamber morphology and have superior contrast between the blood pool and myocardium
when compared to echocardiography.

CMR is a precise and accurate method for assessing LVH, which is a characteristic
of HFpEF, being observed in approximately 50–70% of patients. It is also associated with
coronary microcirculatory structural and functional abnormalities [59], and an increased
risk of major adverse cardiovascular events (MACE) [60]. Furthermore, advanced artificial
intelligence methods of assessing LV structure not only outperform echocardiography but
human analysis of CMR and can provide insight into patterns of LV remodeling present
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in HFpEF [61]. In a considerable proportion [62] of patients with HFpEF, the left atrium
(LA) dilates, which is linked to MACE [58]. The LA dimensions may be precisely evaluated
by CMR compared to echocardiography due to the absence of geometric constraints and
better spatial resolution; however, there is limited consensus on the preferred method with
the Simpson’s biplane reference standard not typically being part of the standard CMR
protocol [63]. As with the LV, the right ventricle is more accurately assessed by CMR, and
its function is frequently impaired in HFpEF.

2.9.2. Cardiac Function

Although LVEF is preserved (>50%) in HFpEF, this does not exclude significant
systolic dysfunction that can be identified through CMR-LV strain analysis. In a cohort of
131 patients with HFpEF, reduced global longitudinal strain was associated with increased
MACE on multivariate analysis, while LVEF had no influence [64]. Impaired strain is
associated with CMD [65,66] and diffuse myocardial fibrosis [67], two hallmark features
of HFpEF making it a promising technique. There are various methods of CMR strain
acquisition, the most common of which is feature-tracking that can be undertaken by
postprocessed standard cine images collected in the majority of CMR protocols [58]. The
small evidence base, differences in vendor postprocessing software, absence of robust
normative values, and lack of standardized approach make it unsuitable for widespread
clinical rollout [68].

Accurate assessment of diastolic function is crucial for the diagnosis of HFpEF, with
increasing evidence that it is associated with microvascular disease [69–71]. Transmitral
flow velocities generating E (passive diastolic flow) and A waves (active diastolic flow)
can be determined using phase-contrast CMR and correlate fairly with reference standard
echocardiography [72]. However phase-contrast CMR imaging has multiple limitations
including lower temporal resolution, thus systematic underestimation of values, averaging
of flows over multiple breath holds, phase-offset errors, appropriate selection of velocity
encoding, and labour-intensive postprocessing [73]. CMR can assess the rapid myocardial
velocities (e’) analogous with echocardiography Tissue Doppler Imaging with similar levels
of agreement and have similar limitations as phase-contrast CMR, limited by temporal reso-
lution and evidence base [74,75]. 4D-CMR shows promise as an alternative method of CMR
diastolic assessment [76]; however, it requires long acquisition, specialist postprocessing,
and therefore is not in routine clinical use and limited to research centres.

2.10. Myocardial Perfusion CMR

While many of the parameters assessed by CMR have been associated with microvas-
cular disease, it is important to acknowledge that they do not provide direct measurement
of the coronary microvasculature. However, myocardial perfusion CMR is rapidly gaining
recognition as a reliable technique for diagnosing, quantifying, and monitoring CMD in
patients with HFpEF.

The principle underlying myocardial perfusion CMR in HFpEF is that, when there is
no significant coronary stenosis, valvular disease, or primary heart muscle disease, induc-
ing hyperaemia through stress or exercise will increase myocardial blood flow (MBF) and
that this response is reflective of the function of the coronary microcirculation. The most
commonly used stress is adenosine or the A2A adenosine receptor agonist, Regadenason;
however, protocols for Dobutamine and exercise exist [77]. During myocardial perfusion
CMR, a series of images is obtained over at least three myocardial short-axis slices follow-
ing injection of a gadolinium-based contrast agent (GBCA). Images are ECG-gated and
acquired every 1–2 heartbeats (depending on heart rate) using a T1-weighted dynamic
pulse sequence, with total acquisition taking ~40–60 s. As part of a standard protocol, the
sequence is repeated twice—once at peak stress and again at rest.

Myocardial perfusion imaging has evolved from a qualitative visual assessment in
which reduced MBF was appreciated as a hypointense, to advanced validated quantita-
tive perfusion sequences that automatically segment the myocardium and quantify MBF
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(in mL/min/g) on a pixel-by-pixel basis [78,79]. With quantification, not only are absolute
stress and rest MBF values obtained but the myocardial perfusion reserve (MPR) is calcu-
lated as a ratio between stress MBF/rest MBF. The distinctive perfusion defect seen with
CMD is circumferential hypointensity of the endocardium compared to the epicardium
(Figure 1); this defect is 4.5 times more readily appreciated when using quantitative perfu-
sion colour maps compared to raw greyscale images [71].

Medicina 2023, 59, x FOR PEER REVIEW  9  of  22 
 

 

acquired every 1–2 heartbeats  (depending on heart rate) using a T1‐weighted dynamic 

pulse sequence, with total acquisition taking ~40–60 s. As part of a standard protocol, the 

sequence is repeated twice—once at peak stress and again at rest. 

Myocardial perfusion imaging has evolved from a qualitative visual assessment in 

which reduced MBF was appreciated as a hypointense, to advanced validated quantita‐

tive perfusion sequences that automatically segment the myocardium and quantify MBF 

(in mL/min/g) on a pixel‐by‐pixel basis [78,79]. With quantification, not only are absolute 

stress and rest MBF values obtained but the myocardial perfusion reserve (MPR) is calcu‐

lated as a ratio between stress MBF/rest MBF. The distinctive perfusion defect seen with 

CMD is circumferential hypointensity of the endocardium compared to the epicardium 

(Figure 1); this defect is 4.5 times more readily appreciated when using quantitative per‐

fusion colour maps compared to raw greyscale images [71]. 

 

Figure  1. Quantitative myocardial perfusion CMR  (cardiovascular magnetic  resonance) map  of 

HFpEF (heart failure with preserved ejection fraction) vs. healthy control. This is an exemplar case 

comparing quantitative myocardial perfusion [78] CMR between an HFpEF case and a healthy con‐

trol. 1. Stress proton density images at the mid‐short‐axis level showing the passage of GBCA in the 

LV. The HFpEF case has a faint circumferential subendocardial hypointensity when compared to 

the healthy control. 2. Stress MBF is reduced in HFpEF compared to the control, and visual review 

of HFpEF case shows an overt circumferential subendocardial perfusion defect when compared to 

the healthy control. 3. Rest MBF, in this case, does not show a significant difference between HFpEF 

and the healthy control. 4. A bullseye map using a 16‐segment model of all 3 short‐axis slices (not 

shown in figure) shows reduced MPR (myocardial perfusion reserve) in HFpEF compared to the 

healthy control. 

Numerous studies (Table 1) consistently demonstrate that those with HFpEF have 

impaired MPR, making it a potentially important biomarker of the disease. Kato et al. [80] 

used phase‐contrast cine imaging of the coronary sinus to estimate the global MBF and 

MPR values (synonymous with coronary flow reserve as used in their manuscript) in a 

cohort consisting of: HFpEF, LVH secondary to hypertension, and healthy controls. MPR 

was significantly (p < 0.05) lower in the HFpEF group (2.21 ± 0.6) when compared to hy‐

pertensive (3.05 ± 0.7) and healthy controls (3.83 ± 0.7). At‐rest MBF was significantly ele‐

vated in HFpEF and hypertension when compared to controls, possibly reflecting the in‐

creased resting energy demands in these conditions but also their increased left ventricu‐

lar mass, as the authors did not adjust for that in their estimation of MBF. Also, stress MBF 

was lower when compared to controls, further reducing MPR. 

In another age‐ and sex‐matched cohort, those with HFpEF were found to have sig‐

nificantly reduced global MPR when compared to healthy controls (2.29 ± 0.6 vs. 3.38 ± 

0.8, p < 0.01) and higher resting MBF, and lower stress MBF when using a quantitative 

Figure 1. Quantitative myocardial perfusion CMR (cardiovascular magnetic resonance) map of
HFpEF (heart failure with preserved ejection fraction) vs. healthy control. This is an exemplar case
comparing quantitative myocardial perfusion [78] CMR between an HFpEF case and a healthy control.
1. Stress proton density images at the mid-short-axis level showing the passage of GBCA in the LV.
The HFpEF case has a faint circumferential subendocardial hypointensity when compared to the
healthy control. 2. Stress MBF is reduced in HFpEF compared to the control, and visual review of
HFpEF case shows an overt circumferential subendocardial perfusion defect when compared to the
healthy control. 3. Rest MBF, in this case, does not show a significant difference between HFpEF
and the healthy control. 4. A bullseye map using a 16-segment model of all 3 short-axis slices (not
shown in figure) shows reduced MPR (myocardial perfusion reserve) in HFpEF compared to the
healthy control.

Numerous studies (Table 1) consistently demonstrate that those with HFpEF have
impaired MPR, making it a potentially important biomarker of the disease. Kato et al. [80]
used phase-contrast cine imaging of the coronary sinus to estimate the global MBF and
MPR values (synonymous with coronary flow reserve as used in their manuscript) in a
cohort consisting of: HFpEF, LVH secondary to hypertension, and healthy controls. MPR
was significantly (p < 0.05) lower in the HFpEF group (2.21 ± 0.6) when compared to hyper-
tensive (3.05± 0.7) and healthy controls (3.83± 0.7). At-rest MBF was significantly elevated
in HFpEF and hypertension when compared to controls, possibly reflecting the increased
resting energy demands in these conditions but also their increased left ventricular mass, as
the authors did not adjust for that in their estimation of MBF. Also, stress MBF was lower
when compared to controls, further reducing MPR.

In another age- and sex-matched cohort, those with HFpEF were found to have signifi-
cantly reduced global MPR when compared to healthy controls (2.29 ± 0.6 vs. 3.38 ± 0.8,
p < 0.01) and higher resting MBF, and lower stress MBF when using a quantitative first-pass
perfusion sequence [81]. The cohorts had no significant difference in indexed left ventricu-
lar mass, highlighting that importance of assessing the functional component of HFpEF
and not relying solely on structural abnormalities.

The hallmark features in HFpEF of impaired MPR may reflect a combination of ele-
vated rest MBF, indicating higher oxygen demand and reduced stress MBF, demonstrating
structural and functional defects in the vascular system.
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The above studies have examined global values for MBF and MPR; however, the
latest iteration of quantitative perfusion sequences [78,79] utilises CMRs superior spatial
resolution to automatically segment the heart into not just the regional 16-segment model
but further subdivide each segment into an endocardial and epicardial component. This
allows the quantification of an endocardial/epicardial ratio that can quantify the degree of
inducible subendocardial ischaemia, which has long been suggested as a risk factor for HF
and MACE, not just in HFpEF but across cardiovascular diseases [71].

Markley et al. [71] recently reported a 100% prevalence of a stress endocardial/epicardial
ratio <1.0 (0.87 (0.81–0.90)) in a carefully phenotyped group (n = 19) of obese women
with HFpEF and unobstructed coronaries. In relation to diastolic dysfunction, there was a
correlation between the stress endocardial/epicardial ratio vs. E/e’ (r = −0.54, p = 0.014)
and e’ (r = +0.53, p = 0.019), indicating that microvascular dysfunction, predominantly
of the subendocardium, correlates with diastolic dysfunction, albeit the direction of the
relationship is unclear. This finding corroborates with models and invasive study [69,70],
showing that a reduced endocardial/epicardial ratio correlates with left ventricular filling
pressures and echocardiography cardiographic measures of diastolic function.

Not only are perfusion abnormalities prevalent in HFpEF, they relate to long-term
outcome. Visually assessed perfusion defects are independently associated with MACE
(HR 5.6 (3.6–8.6), p < 0.001) in a large (n = 1203) single-centre retrospective cohort [82]. This
finding was replicated in a smaller (n = 101) prospective cohort [27] utilising quantitative
first-pass perfusion techniques, where an MPR < 2.0 was taken as abnormal, and on multi-
variate analysis was independently predictive of MACE. Larger prospective multicentre
studies are required to investigate and confirm this finding.

Despite advances, there are significant challenges with quantitative perfusion CMR
that have limited its widespread clinical adoption; it is not included in any major society
guidelines and not available in many nonacademic centres. On a practical level, while
the output can be “in-line” and available for review before the end of the scan, time
investment is required for quality control of the output (Table 2). The person reporting
scans should review adequacy of motion correction, cardiac gating, segmentation, and
degree of hyperaemia, which can be as insufficient in 10% [83]. Abnormalities in any of the
above can cause errors in accurate MBF calculation. Furthermore, there are not yet accepted
normative values for MBF, due to a lack of large-scale datasets, differences in models used
for estimation of MBF, sequence design, and intervendor differences.

Table 2. CMR studies in HFpEF.

Study Population Modality Perfusion Parameters Tissue Characteristics Outcome

Kato et al.
2015 [80]

HFpEF (n = 25)
Controls (n = 19)

Hypertensives (n = 13)
Phase-contrast CMR

Stress MBF ↓
No tissue characterisation Not linked to outcomesRest MBF ↑

MPR ↓

Löffler et al.
2019 [81]

HFpEF (n = 19)
Controls (n = 15)

Quantitative perfusion CMR
Stress MBF ↓ ECV ↑

Not linked to outcomesRest MBF ↑ LGE presence Not compared to
controlsMPR ↓

Arnold et al.
2022 [27]

HFpEF (n = 101)
Controls (n = 42)

Quantitative perfusion CMR
Stress MBF ↓ ECV: ↑ Reduced MPR independently associated with

MACE.
Increased ECV associated with MACE.

Rest MBF ↔ LGE presence: ↑MPR ↓

Pezel et al.
2021 [82]

HFpEF (n = 1203)
No control group

Semi-quantitative visually
assessed perfusion for

segments of ischaemia on
CMR

N/A (no control group) N/A (no control group)

Moderate (3–5 segments) and severe (≥6)
segments of ischaemia associated with MACE.

Presence of LGE associated with MACE on
multivariate regression.

HFpEF: heart failure with preserved ejection fraction, CMR: cardiovascular magnetic resonance, MPR: myocardial
perfusion reserve, MACE: major adverse cardiovascular events, ECV: extracellular volume fraction.

2.11. Tissue Characterisation

One of the unique capabilities of CMR is to evaluate diffuse myocardial fibrosis (DMF)
using T1 mapping and focal fibrosis with LGE sequences. A study of HFpEF patients [84]
using autopsy findings revealed that increasing levels of DMF weakly correlates (r= −0.26,
p = 0.004) with a reduction in capillary density, indicating that there is an association be-
tween MBF and DMF. On CMR, quantification of DMF is achieved through T1 mapping that
pre- and post-GBCA can separate the cellular (cardiomyocytes, fibroblasts, endothelial, and
red blood cells) from the extracellular (extracellular matrix, blood plasma) compartments,
allowing calculation of the extracellular volume fraction (ECV) [85]. Loffler et al. [81]
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demonstrated higher extracellular volume fraction (ECV) in HFpEF compared to controls
(29% vs. 25%, p = 0.02), with ECV negatively correlating with MPR (r= −0.54, p < 0.01),
which mirrors the histological correlation of increasing DMF with decreased capillary
density [84]. A similar negative correlation between ECV and MPR was demonstrated
by Arnold et al. [27], albeit without statistical significance. This apparent discordance is
possibly related to differences in sample selection and imprecise estimates.

Patients with HFpEF are 10 times more likely to have the presence of nonischaemic
focal fibrosis (on LGE) when compared to controls [27]; however, the absolute mass of focal
fibrosis is not significantly elevated nor was there an association with MPR.

Although tissue characterisation using CMR provides insight into the potential mecha-
nisms and associations with microvascular disease, the findings from initial studies are not
as consistent as for myocardial perfusion CMR. Firstly, there is a current lack of evidence
base, and large multicentre prospective studies are required to fully assess the associations
between DMF and focal fibrosis on diagnosis, monitoring, and prognosis for HFpEF. For
these studies to be successful, trial design will be paramount to overcome the limitations of
tissue characterisation via CMR. It is accepted that resolution is limited with a single voxel
on CMR incorporating millions of myocytes [86]; therefore, the diffuse patchy changes
on histology may be difficult to detect, especially in the early stages, due to their diffuse
nature that is averaged out across the voxel. There is poor harmonisation of tissue map-
ping sequences [87], with similar T1 mapping sequences having numerical variation up to
11-fold in numerical value and even applying the same sequence at various sites having
potentially significant intersite variability.

Identification and quantification of LGE has significant inter- and intra-observer
variability, especially when assessing nonischaemic patterns of LGE [88], which has a
significant impact on both single-timepoint and longitudinal studies. Finally, the constant
through plane motion of the heart coupled with acquiring sequences over multiple heart
beats requires accurate ECG-gating, breath-holding, and motion correction is a persistent
challenge and abnormalities in any of the above reducing reliability and introducing artifact.

2.12. MRI Assessment of CSVD

Accurately characterising CSVD using MRI presents diagnostic challenges that are
like those encountered in HFpEF. Nonetheless, MRI has been in use for a longer time and
is more deeply integrated into both clinical investigation and research on CSVD. Neu-
roimaging features associated with CSVD are diverse and nonspecific and are also seen in
nonvascular pathologies such as multiple sclerosis or neuroinfection. Inconsistencies in im-
age acquisition protocols, interpretation, and reporting are being tackled by the Standards
for Reporting Vascular Changes on Neuroimaging (STRIVE-1 and STRIVE-2) [32,33], which
have been devised and advise on reporting standards to each neuroimaging feature and a
list of minimal essential sequences (T1- and T2-weighted sequences, diffusion-weighted
imaging, T2-weighted Fluid-Attenuated Inversion Recovery, and T2*-weighted gradient
echocardiography) required. These neuroimaging features mostly are unifocal or multifocal
morphological tissue abnormalities that represent the consequences to the microvascular
disease. Previously accurate and reproducible segmentation of these neuroimaging fea-
tures, such as WMH and perivascular spaces, was manual and therefore time-consuming.
Recently, artificial intelligence approaches [89,90] have brought improved precision and
time savings to this process. Similar generalised imaging and reporting standards [91,92]
exist for CMR; however, specific recommendations or position papers for HFpEF do not.

Building upon STRIVE, there has been the development of multiple scoring systems
for CSVD [93,94], in which the presence of a typical neuroimaging feature scores points that
improve prediction of cognitive impairment, recurrent strokes, and all-cause mortality. Sim-
ilar non-CMR-based scoring algorithms [95] have been validated in HFpEF; however, these
are typically complex and require multiple steps, which presents an untapped opportunity
to potentially enhance diagnosis and prognosis in HFpEF by incorporating CMR.
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Brain MRI has several technical advantages over CMR, which allow for improved
assessment of brain structure and tissue. Firstly, brain MRI has superior spatial resolution
compared to CMR, as it allows for the application of a narrower field of view to the skull
when compared to the thorax. Secondly, though internal pulsations exist inside the brain,
brain MRI does not have to contend with cardiac motion, which increases precision and
reliability and enables superior tissue characterisation compared to CMR. Additionally,
no ECG-gating is required, allowing for faster acquisition or the application of longer
sequences that would be prohibitively prolonged in CMR. However, complete coverage of
the larger brain can be time-consuming and sensitive to minor patient motion, especially
as some of the neuroimaging markers are very small and therefore susceptible to patient
motion [96].

The previous paragraphs outline some of the advances and advantages of brain MRI
over CMR that are relevant to the assessment of CSVD and HFpEF. A comprehensive
discussion of standard sequences outlined by STRIVE and the typical neuroimaging fea-
tures of CSVD is too broad and beyond the scope of this review and can be obtained
elsewhere [28,97]. This section of the review will instead focus on exploring the similarities
and differences between CSVD and HFpEF in relation to cerebral and myocardial perfusion
and recent advances in cerebral tissue characterisation and its correlations with CMR.

2.13. Cerebral Perfusion

Perfusion abnormalities are a common finding in CSVD, with an probable inverse
relationship between CBF and CSVD severity [98]. There is ongoing debate as to whether
reduced CBF is a cause or consequence [38] of CSVD, as loss of neural tissue could result in
decreased metabolic demand and therefore reduced CBF; conversely, reduced perfusion
may lead to tissue damage. Especially deeper brain structures, following the trajectories
of the inner blood supply, and so-called water shed regions between different vascular
territories, such as periventricular white matter, are prone to hypoperfusion. Small-scale
human study [99] and animal modelling [100] suggest that perfusion abnormalities can be
present prior to tissue changes; however, larger-scale longitudinal studies are required to
address this relationship further.

Note that the abovementioned neuroimaging findings are focal morphological abnor-
malities (“tip of ice-berg” features) of the brain, while the underlying pathophysiological
processes are likely more widely and diffusively spread. To asses more global brain regions,
dynamic susceptibility contrast (DSC) [101] and arterial spin labelling (ASL) [102] are
common validated techniques for estimated cerebral CBF with MRI. DSC measures the first
pass of paramagnetic intravascular contrast (such as GBCA), more or less comparable to
myocardial perfusion CMR, while ASL utilizes magnetically labelled arterial blood water
as an endogenous contrast agent. ASL is advantageous for repeated studies, helping to
address (largely theoretical) concerns about repeated administration GBCA and cognitive
impairment [103,104]. Note that ASL only sufficiently assesses the grey matter and is prone
to the arterial transit time, which varies with macrovascular disease or ageing, while DSC
is sufficiently sensitive to measure (the less perfused) white and grey matter.

Meta-analysis [50] combining modalities (MRI, CT, PET) demonstrated that patients
with a higher burden of WMH had lower global CBF when compared to patients with
lower WMH burden. Lower CBF was observed in both in most grey and white matter
areas. The white matter is of crucial importance in CSVD as this region of the brain is
exclusively supplied by small vessels of the inner supply system that are susceptible to
damage and has the lowest regional perfusion in the brain [98]; therefore, focussing on
this region is important as reductions in CBF could be an early sign of CSVD before tissue
changes are seen on MRI. Deep WMH are typically associated with vascular degeneration;
however, periventricular WMH are a consistent feature in ageing and may be related
to mechanical loading of the ependymal cells present at the brain–fluid interface at the
ventricular wall [105].
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The reduction in resting CBF contrasts with the mildly elevated resting MBF detected in
HFpEF, which is possibly explained by fundamental functional differences in the heart and
brain in relation to perfusion. The brain undergoes neurovascular coupling, which refers
to the coordination between neuronal activity and CBF; when neurons are activated, they
demand increased oxygen and nutrients, which triggers an increase in CBF to that specific
region of the brain. In CSVD, once tissue damage has occurred and neurovascular coupling
is impaired [106], CBF may not properly follow the metabolic demand of the brain tissue.

Although HFpEF and CSVD may differ in response to basally required blood flow, they
share a significant similarity when it comes to measuring endothelial function in the form
of cerebral vascular reserve (CVR) [51]—the ratio between stress and rest CBF analogous to
MPR in the heart. As endothelial dysfunction is likely a key pathophysiological mechanism
in the development of CSVD, assessing it through CVR measurement may be advanta-
geous in CSVD evaluation. “Stressing” the brain is usually achieved through inducing
hypercapnia (via breath-holding or breathing CO2-enriched air) [51,98] or administration of
acetazolamide; both cause temporary vasodilatation of the cerebral microvascular system
and an increase in CBF.

As seen in HFpEF, CVR in CVSD is often reduced when compared to controls. Thrip-
pleton et al. [107] demonstrated lower grey-matter CVR in patients with minor stroke
when compared to controls using a hypercapnic CO2-enriched air protocol. There is likely
an inverse association between CVR and CSVD severity on neuroimaging, with a higher
WMH volume being associated with lower white-matter CVR [108]. CVR measurement is
also promising to untangle the cause or consequence debate for the development of WMH
as impaired CVR can be detected in areas of normal-appearing white matter that progress
to WMH [109].

Although impaired CVR is a promising biomarker in detecting early CSVD before
tissue changes and correlates with traditional markers of CSVD severity—presenting a
promising parallel with impaired MPR seen in HFpEF—the studies mentioned above have
similar limitations as discussed with myocardial perfusion CMR. Many of them are small-
scale and single-site, with limited longitudinal follow-up, and there is considerable diversity
in the mechanism of inducing stress, image acquisition, and postprocessing. Therefore,
although the evidence base is promising, it remains thin, and significant expansion is
necessary before drawing firm conclusions.

2.14. Vessel Size Imaging

Vessel size (and density) imaging is a research technique that can provide in vivo
quantitative estimates of mean vessel diameter and density within a given voxel and
is sensitive to large vessels and microvasculature <10 µm in diameter [110]. It exploits
the difference in the ratio of relaxation rate changes as measured by gradient and spin
echocardiography pulse sequences on T2- and T2*-weighted images during the passage of
intravascular contrast, and if hybrid sequences combining both spins are employed, it can
also estimate CBF, thereby making it an attractive combination sequence. Thus far, most
of the research for vessel size imaging has been in the field of cerebral neoplasms [110];
however, initial study [111] in patients with CSVD detected a significantly increased mean
vessel diameter when compared to matched controls. The finding of increased mean vessel
diameter indicates that there is a potential reduction in the microvessels that increases the
overall mean vessel diameter in the brain as the large vessels are preserved. This suggests
that not only is there microvascular dysfunction (as evidenced by impaired CVR) but also
reduced microvascular density that has also been noted in HFpEF autopsy study [84].

As with other techniques vessel size imaging is in its infancy for CSVD and further
research is required; also, whether this technique can be translated into the heart and
overcome motion is to be seen but could be of value.
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2.15. Blood–Brain Barrier Integrity

The BBB refers to the properties of the microvasculature of the brain preventing
easy exchange between the blood and the tissues, of which there is no analogue inside
the myocardium. Pericyte endothelial cells tightly regulate the movement of molecules,
ions, and cells between the blood and the brain [38]. As the integrity of the capillaries
is disrupted in CSVD, this may cause BBB leakage that can be detected using dynamic
contrast-enhanced (DCE) MRI. DCE-MRI uses T1-weighted images that are acquired pre-
and ~15 min post-GBCA administration, and the T1 longitudinal relaxation time (that is
shortened by GBCA) is measured allowing quantification of BBB leakage from a pharma-
cokinetic model [38]. Increased BBB leakage is associated with CSVD, reduced perfusion,
and cognitive impairment [112,113]. This finding is akin to the increased ECV observed
in HFpEF when employing the same principle of T1 longitudinal shortening pre- and
post-GBCA administration to gauge the quantity of GBCA in the extracellular space, where
increased levels are deemed pathological.

The main limitations of the technique are the requirement for GBCA, prolonged delay
required between GBCA administration and acquisition (>15 min), and the low signal-
to-noise ratio of the leakage effect [38]. Newer techniques [114,115] have been developed
targeting the water exchange across the endothelium that do not require contrast material.

2.16. Diffusion Tensor Imaging

Diffusion tensor imaging (DTI) is an advanced imaging technique used to assess the
microstructural organization of a tissue by examining the diffusion of water molecules [116].
It provides information about the degree of alignment (fractional anisotropy) and overall
diffusion (mean diffusivity) within the targeted tissue. DTI is chiefly directed at the white
matter tracts as these are believed to play a crucial role in cognitive function. Patients with
CSVD, when compared to controls [116,117], have lower fractional anisotropy and increased
mean diffusivity, indicating loss of alignment of the white matter tracts as water diffusion
is less restricted, and these DTI measures correlate with cognitive impairment [116]. While
showing promise in cardiac applications [86], the implementation of this technique in
research is relatively recent.

3. Discussion

The comparison between HFpEF and CSVD is becoming increasingly relevant, with
some experts suggesting that HFpEF could be considered a “dementia of the heart”, [118]
with both being viewed as manifestations of maladaptive cardiac or brain ageing. Both
HFpEF and CSVD pose significant ongoing challenges due, in part, to being classified
as a single large heterogenous category with a shared similar aetiology. However, they
consist of multiple distinct phenotypes, making it difficult to differentiate and target them
effectively. Greater attention is required to discern and focus on specific subtypes within
these conditions. Fundamentally, microvascular disease is characterized by a disturbance
in the structure and function of the microvessels, resulting in a mismatch between supply
and demand and subsequent damage to the end organs.

Insights from animal models and autopsy studies [14,16,18,84,119] indicate that both
HFpEF and CSVD have some shared pathophysiology. In the case of HFpEF, it is hypothe-
sized that endothelial dysfunction leads to structural and functional abnormalities in the
coronary microvasculature including: small artery remodeling and impaired vasodilation,
capillary rarefaction and other capillary structural abnormalities. This is associated with
abnormal cardiomyocyte function, energetics, and diffuse myocardial fibrosis. This is
mirrored in CSVD, where microvascular disease of the cerebral arteries is characterized by
endothelial dysfunction, small artery remodeling, blood–brain barrier disruption, capillary
structural abnormalities, and capillary rarefaction. There is associated cerebral parenchymal
damage with demyelination, neuronal loss, oligodendrocyte damage, and axonal injury.

In both, endothelial dysfunction leading to the disruption in nitric oxide pathways has
been identified as a potential common pathway that may be a suitable therapeutic target.
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Recent CSVD phase 2 study [120] indicates that Isosorbide Mononitrate and Cilostazol,
both of which modulate endothelial function, may improve long-term outcome in lacunar
stroke. Moreover, they share similar risk factors including aging and pro-inflammatory
cardiovascular risk factors such as diabetes mellitus, hypertension, and obesity. Despite
advances in research, there is still a shortage of appropriate animal models of disease which
may be reflective of HFpEFs and CSVDs heterogenous nature [51].

Both HFpEF and CSVD face research gaps due to the inability to spatially resolve the
microvasculature in vivo. This is critical in the early stages when organ tissue changes and
clinical symptoms are not yet present. Functional imaging techniques are emerging as a
promising approach to overcome these challenges and provide insights into microvascular
functional changes before tissue changes occur.

Quantitative perfusion CMR shows promise in reliably assessing the distinctive cir-
cumferential subendocardial pattern of impaired MPR in HFpEF [71]. Incorporating this
technique into diagnostic criteria and therapeutic trials could refine understanding of
HFpEF and potentially reduce time and costs associated with large clinical trials.

Impaired CVR may indicate early CSVD before irreversible tissue damage [109]. This
finding adds to the growing body of evidence supporting endothelial dysfunction in HFpEF
and CSVD. Stress protocols for assessing CVR are less established with added complexity
of neurovascular coupling and the unique structural composition [98]. To advance in this
field, widely available validated protocols are required, along with large-scale multicenter
trials that are planned [121].

Comparatively, quantitative perfusion CMR is ahead due to the relative ease of stress-
ing the heart and stress cardiac assessment being a fundamental test of cardiac function
with extensive evidence base. It is limited by several factors including: limited availability,
lack of standardization, and no formally accepted normative values [77].

Brain MRI excels in tissue characterization, and while this review has focused predom-
inantly on the perfusion changes associated with HFpEF and CSVD, the tissue response
is an essential component and cannot be neglected. Future CMR research requires con-
tinued effort to characterize myocardial tissue in HFpEF. Given that HFpEF and CSVD
may be results of systemic microvascular disease, future research could aim to assess other
organs susceptible to microvascular disease or target capillary beds that can be visualized
in vivo, such as the retina or sublingually [122]. Microvascular retinal abnormalities have
been identified in both cardiovascular [123] and neurological [124,125] conditions and may
provide an additional avenue to noninvasively assess for microvascular disease.

4. Conclusions

Both HFpEF and CSVD pose significant challenges in terms of understanding patho-
physiology, accurate diagnosis, and development of effective therapies. MRI offers a
promising approach for the comprehensive assessment of these disorders, due to its unique
noninvasive tissue characterization properties and emerging role in heart and brain func-
tional perfusion imaging. Despite MRI’s potential, there are still limitations that need
refinement before translation to clinical practice. MRI needs to be part of a multiparamet-
ric clinical assessment, and future research needs to also consider the tissue response to
microvascular disease to obtain a complete overview.
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