41 research outputs found

    Nucleoside diphosphate kinase A as a controller of AMP-kinase in airway epithelia

    Get PDF
    This review integrates recent understanding of a novel role for NDPK-A in two related directions: Firstly, its role in an airway epithelial cell when bound to the luminal (apical) membrane and secondly in the cytosol of many different cells (epithelial and non-epithelial) where an isoform-specific interaction occurs with a regulatory partner, AMPKα1. Thus NDPK-A is present in both a membrane and cytosolic environment but in the apical membrane, its roles are not understood in detail; preliminary data suggest that it co-localises with the cystic fibrosis protein (CFTR). In cytosol, we find that NDPK-A is coupled to the catalytic alpha1 isoform of the AMP-activated protein kinase (AMPKα subunit), which is part of a heterotrimeric protein complex that responds to cellular energy status by switching off ATP-consuming pathways and switching on ATP-generating pathways when ATP is limiting. We find that ATP is located within this complex and ‘fed’ from NDPK to AMPK without ever ‘seeing’ bulk solution. Importantly, the reverse can also happen such that AMPK activity can be made to decline when NDPK-A ‘steals’ ATP from AMPK. Thus we propose a novel paradigm in NDPK-A function by suggesting that AMP-kinase can be regulated by NDPK-A, independently of AMP

    The cystic fibrosis transmembrane recruiter the alter ego of CFTR as a multi-kinase anchor

    Get PDF
    This review focuses on a newly discovered interaction between protein kinases involved in cellular energetics, a process that may be disturbed in cystic fibrosis for unknown reasons. I propose a new model where kinase-mediated cellular transmission of energy provides mechanistic insight to a latent role of the cystic fibrosis transmembrane conductance regulator (CFTR). I suggest that CFTR acts as a multi-kinase recruiter to the apical epithelial membrane. My group finds that, in the cytosol, two protein kinases involved in cell energy homeostasis, nucleoside diphosphate kinase (NDPK) and AMP-activated kinase (AMPK), bind one another. Preliminary data suggest that both can also bind CFTR (function unclear). The disrupted role of this CFTR-kinase complex as ‘membrane transmitter to the cell’ is proposed as an alternative paradigm to the conventional ion transport mediated and CFTR/chloride-centric view of cystic fibrosis pathogenesis. Chloride remains important, but instead, chloride-induced control of the phosphohistidine content of one kinase component (NDPK, via a multi-kinase complex that also includes a third kinase, CK2; formerly casein kinase 2). I suggest that this complex provides the necessary near-equilibrium conditions needed for efficient transmission of phosphate energy to proteins controlling cellular energetics. Crucially, a new role for CFTR as a kinase controller is proposed with ionic concentration acting as a signal. The model posits a regulatory control relay for energy sensing involving a cascade of protein kinases bound to CFTR

    Baseline factors predictive of serious suicidality at follow-up: findings focussing on age and gender from a community-based study

    Get PDF
    The electronic version of this article is the complete one and can be found online at: http://www.biomedcentral.com/1471-244X/10/41Background: Although often providing more reliable and informative findings relative to other study designs, longitudinal investigations of prevalence and predictors of suicidal behaviour remain uncommon. This paper compares 12-month prevalence rates for suicidal ideation and suicide attempt at baseline and follow-up; identifies new cases and remissions; and assesses the capacity of baseline data to predict serious suicidality at follow-up, focusing on age and gender differences. Methods: 6,666 participants aged 20-29, 40-49 and 60-69 years were drawn from the first (1999-2001) and second (2003-2006) waves of a general population survey. Analyses involved multivariate logistic regression. Results: At follow-up, prevalence of suicidal ideation and suicide attempt had decreased (8.2%-6.1%, and 0.8%-0.5%, respectively). However, over one quarter of those reporting serious suicidality at baseline still experienced it four years later. Females aged 20-29 never married or diagnosed with a physical illness at follow-up were at greater risk of serious suicidality (OR = 4.17, 95% CI = 3.11-5.23; OR = 3.18, 95% CI = 2.09-4.26, respectively). Males aged 40-49 not in the labour force had increased odds of serious suicidality (OR = 4.08, 95% CI = 1.6-6.48) compared to their equivalently-aged and employed counterparts. Depressed/anxious females aged 60-69 were nearly 30% more likely to be seriously suicidal. Conclusions: There are age and gender differentials in the risk factors for suicidality. Life-circumstances contribute substantially to the onset of serious suicidality, in addition to symptoms of depression and anxiety. These findings are particularly pertinent to the development of effective population-based suicide prevention strategies.A Kate Fairweather-Schmidt, Kaarin J Anstey, Agus Salim and Bryan Rodger

    NM23 proteins: innocent bystanders or local energy boosters for CFTR?

    Get PDF
    NM23 proteins NDPK-A and -B bind to the cystic fibrosis (CF) protein CFTR in different ways from kinases such as PKA, CK2 and AMPK or linkers to cell calcium such as calmodulin and annexins. NDPK-A (not -B) interacts with CFTR through reciprocal AMPK binding/control, whereas NDPK-B (not -A) binds directly to CFTR. NDPK-B can activate G proteins without ligand-receptor coupling, so perhaps NDPK-B's binding influences energy supply local to a nucleotide-binding site (NBD1) needed for CFTR to function. Curiously, CFTR (ABC-C7) is a member of the ATP-binding cassette (ABC) protein family that does not obey 'clan rules'; CFTR channels anions and is not a pump, regulates disparate processes, is itself regulated by multiple means and is so pleiotropic that it acts as a hub that orchestrates calcium signaling through its consorts such as calmodulin/annexins. Furthermore, its multiple partners make CFTR dance to different tunes in different cellular and subcellular locations as it recycles from the plasma membrane to endosomes. CFTR function in airway apical membranes is inhibited by smoking which has been dubbed 'acquired CF'. CFTR alone among family members possesses a trap for other proteins that it unfurls as a 'fish-net' and which bears consensus phosphorylation sites for many protein kinases, with PKA being the most canonical. Recently, the site of CFTR's commonest mutation has been proposed as a knock-in mutant that alters allosteric control of kinase CK2 by log orders of activity towards calmodulin and other substrates after CFTR fragmentation. This link from CK2 to calmodulin that binds the R region invokes molecular paths that control lumen formation, which is incomplete in the tracheas of some CF-affected babies. Thus, we are poised to understand the many roles of NDPK-A and -B in CFTR function and, especially lumen formation, which is defective in the gut and lungs of many CF babies

    CFTR, chloride concentration and cell volume: could mammalian protein histidine phosphorylation play a latent role?

    No full text
    A considerable body of evidence indicates that the intracellular chloride concentration ([Cl-](i)) is an important regulatory signal in epithelial ion transport. [Cl-](i) regulates the open channel probability of sodium and chloride channels, the rate of chloride channel recycling to the apical membrane, cell volume homeostasis, the activity of sodium-coupled chloride entry pathways and G-protein activity. Cell volume goes awry in epithelial cells bearing mutant forms of the cystic fibrosis (CF) transmembrane conductance regulator protein (CFTR); however, the pathways that mediate this [Cl-](i) effect at the apical membrane of polarized epithelia are unknown. Recently, we proposed a mechanism for the transduction of in vitro chloride concentration into a phosphorylation signal to proteins within the apical membrane of respiratory epithelia. Our studies show that an apically enriched plasma membrane fraction from a variety of species, including sheep, human and mouse airway, contains at least two membrane-bound protein kinases which exhibit a number of novel properties. Firstly, the phosphate is located on histidine residues within different families of proteins; one kinase(s) utilizes GTP rather than ATP as a phosphate donor and each kinase has its own unique profile of membrane protein phosphorylation (which itself varies with anion species). Secondly, both kinases mediate Cl--dependent phosphorylation of an apical membrane protein around the established physiological values for [Cl-](i) in airway epithelial cells (similar to 40 mM); associated phosphatases also alter the net phosphoprotein profile of the apical membrane. These findings are reviewed and their potential roles explored in relation to the pathogenesis of CF using the control of cell volume as a model for disrupted cellular function in CF-affected epithelia.</p

    A novel physical and functional association between nucleoside diphosphate kinase A and AMP-activated protein kinase alpha1 in liver and lung

    No full text
    Nucleoside diphosphate kinase (NDPK, NM23/awd) belongs to a multifunctional family of highly conserved proteins (∼16–20 kDa) containing two well-characterized isoforms (NM23-H1 and -H2; also known as NDPK A and B). NDPK catalyses the conversion of nucleoside diphosphates into nucleoside triphosphates, regulates a diverse array of cellular events and can act as a protein histidine kinase. AMPK (AMP-activated protein kinase) is a heterotrimeric protein complex that responds to cellular energy status by switching off ATP-consuming pathways and switching on ATP-generating pathways when ATP is limiting. AMPK was first discovered as an activity that inhibited preparations of ACC1 (acetyl-CoA carboxylase), a regulator of cellular fatty acid synthesis. We report that NM23-H1/NDPK A and AMPK α1 are associated in cytosol from two different tissue sources: rat liver and a human lung cell line (Calu-3). Co-immunoprecipitation and binding assay data from both cell types show that the H1/A (but not H2/B) isoform of NDPK is associated with AMPK complexes containing the α1 (but not α2) catalytic subunit. Manipulation of NM23-H1/NDPK A nucleotide transphosphorylation activity to generate ATP (but not GTP) enhances the activity of AMPK towards its specific peptide substrate in vitro and also regulates the phosphorylation of ACC1, an in vivo target for AMPK. Thus novel NM23-H1/NDPK A-dependent regulation of AMPK α1-mediated phosphorylation is present in mammalian cells
    corecore