303 research outputs found

    Globally Monotonic Tracking Control of Multivariable Systems

    Get PDF
    © 1963-2012 IEEE. In this technical note we present a method for designing a linear time invariant (LTI) state-feedback controller to monotonically track a step reference at any desired rate of convergence for any initial condition. This method is developed for multi-input multi-output (MIMO) systems, and can be applied to strictly/nonstrictly proper systems, and also minimum/nonminimum-phase systems. This framework shows that for MIMO systems the objectives of achieving a rapid settling time, while at the same time avoiding overshoot/undershoot, are not always competing objectives

    Study of the impact of perilipin polymorphisms in a French population

    Get PDF
    BACKGROUND: Perilipins are proteins localized at the surface of the lipid droplet in adipocytes, steroid-producing cells and ruptured atherosclerotic plaques playing a role in the regulation of triglyceride deposition and mobilization. We investigated whether perilipin gene polymorphisms were associated with obesity, type 2 diabetes, and their related variables (anthropometric variables, plasma leptin, lipids, glucose and insulin concentrations) in a cross-sectional random sample of 1120 French men and women aged 35 to 65 years old, including 227 obese (BMI ≥ 30 kg/m(2)) and 275 type 2 diabetes subjects. RESULTS: Among 7 perilipin polymorphisms tested, only 2 (rs4578621 and rs894160) of them were frequent enough to be fully investigated and we genotyped the sample using the PCR-RFLP method. No significant associations could be found between any of these polymorphisms and the studied phenotypes. CONCLUSION: The rs4578621 and rs894160 polymorphisms of the perilipin gene are not major genetic determinants of obesity and type 2 diabetes-related phenotypes in a random sample of French men and women

    Causal effect of plasminogen activator inhibitor type 1 on coronary heart disease

    Get PDF
    Background: Plasminogen activator inhibitor type 1 (PAI‐1) plays an essential role in the fibrinolysis system and thrombosis. Population studies have reported that blood PAI‐1 levels are associated with increased risk of coronary heart disease (CHD). However, it is unclear whether the association reflects a causal influence of PAI‐1 on CHD risk. Methods and Results: To evaluate the association between PAI‐1 and CHD, we applied a 3‐step strategy. First, we investigated the observational association between PAI‐1 and CHD incidence using a systematic review based on a literature search for PAI‐1 and CHD studies. Second, we explored the causal association between PAI‐1 and CHD using a Mendelian randomization approach using summary statistics from large genome‐wide association studies. Finally, we explored the causal effect of PAI‐1 on cardiovascular risk factors including metabolic and subclinical atherosclerosis measures. In the systematic meta‐analysis, the highest quantile of blood PAI‐1 level was associated with higher CHD risk comparing with the lowest quantile (odds ratio=2.17; 95% CI: 1.53, 3.07) in an age‐ and sex‐adjusted model. The effect size was reduced in studies using a multivariable‐adjusted model (odds ratio=1.46; 95% CI: 1.13, 1.88). The Mendelian randomization analyses suggested a causal effect of increased PAI‐1 level on CHD risk (odds ratio=1.22 per unit increase of log‐transformed PAI‐1; 95% CI: 1.01, 1.47). In addition, we also detected a causal effect of PAI‐1 on elevating blood glucose and high‐density lipoprotein cholesterol. Conclusions: Our study indicates a causal effect of elevated PAI‐1 level on CHD risk, which may be mediated by glucose dysfunction.C. Song … Deborah Lawler … Lyle J. Palmer ... et al. (CHARGE Consortium Hemostatic Factor Working Group; ICBP Consortium; CHARGE Consortium Subclinical Working Group

    RNA

    Get PDF
    Next-generation sequencing is an increasingly popular and efficient approach to characterize the full set of microRNAs (miRNAs) present in human biosamples. MiRNAs' detection and quantification still remain a challenge as they can undergo different post transcriptional modifications and might harbor genetic variations (polymiRs) that may impact on the alignment step. We present a novel algorithm, OPTIMIR, that incorporates biological knowledge on miRNA editing and genome-wide genotype data available in the processed samples to improve alignment accuracy. OPTIMIR was applied to 391 human plasma samples that had been typed with genome-wide genotyping arrays. OPTIMIR was able to detect genotyping errors, suggested the existence of novel miRNAs and highlighted the allelic imbalance expression of polymiRs in heterozygous carriers. OPTIMIR is written in python, and freely available on the GENMED website (http://www.genmed.fr/index.php/fr/) and on Github (github.com/FlorianThibord/OptimiR)

    The 9p21 susceptibility locus for coronary artery disease and the severity of coronary atherosclerosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Case-control Genome-Wide Association Studies (GWAS) have identified single nucleotide polymorphisms (SNPs) at the 9p21 locus as risk factors for coronary artery disease (CAD). The locus does not contain a clear candidate gene. Hence, the results of GWAS have raised an intense interest in delineating the basis for the observed association. We analyzed association of 4 SNPs at the 9p21 locus with the severity and progression of coronary atherosclerosis, as determined by serial quantitative coronary angiograms (QCA) in the well-characterized Lipoprotein Coronary Atherosclerosis Study (LCAS) population. The LCAS is a randomized placebo-control longitudinal follow-up study in patients with CAD conducted to test the effects of fluvastatin on progression or regression of coronary atherosclerosis.</p> <p>Methods</p> <p>Extensive plasma lipid levels were measured at the baseline and 2 1/2 years after randomization. Likewise serial QCA was performed at the baseline and upon completion of the study. We genotyped the population for 4 SNPs, previously identified as the susceptibility SNPs for CAD in GWAS, using fluorogenic 5' nuclease assays. We reconstructed the haplotypes using Phase 2, analyzed SNP and haplotype effects using the Thesias software as well as by the conventional statistical methods.</p> <p>Results</p> <p>Only Caucasians were included since they comprised 90% of the study population (332/371 with available DNA sample). The 4 SNPs at the 9p21 locus were in tight linkage disequilibrium, leading to 3 common haplotypes in the LCAS population. We found no significant association between quantitative indices of severity of coronary atherosclerosis, such as minimal lumen diameter and number of coronary lesions or occlusions and the 9p21 SNPs and haplotypes. Likewise, there was no association between quantitative indices of progression of coronary atherosclerosis and the SNPs or haplotypes. Similarly, we found no significant SNP or haplotype effect on severity and progression of coronary atherosclerosis.</p> <p>Conclusion</p> <p>We conclude the 4 SNPs at the 9p21 locus analyzed in this study do not impart major effects on the severity or progression of coronary atherosclerosis. The effect size may be very modest or the observed association of the CAD with SNPs at the 9p21 locus in the case-control GWAS reflect involvement of vascular mechanisms not directly related to the severity or progression of coronary atherosclerosis.</p

    Sex differences and heritability of two indices of heart rate dynamics: A twin study.

    Get PDF
    We investigated whether women show larger heart rate variability (HRV) than men after controlling for a large number of health-related covariates, using two indices of HRV, namely respiratory sinus arrhythmia (RSA) and approximate entropy (ApEn). In a twin design, the heritability of both indices was examined. The covariation between RSA and ApEn, a measure of heart rate dynamics derived from nonlinear dynamical systems theory, was decomposed into genetic and environmental components. Subjects were 196 male and 210 female middle-aged twins. Females showed larger HRV than men before (ApEn: p <.001; RSA: p = .052) and after adjustment for covariates (ApEn: p <.001; RSA: p = .015). This sex difference was confirmed by significant intrapair differences in the opposite-sex twin pairs for both ApEn (p <.001) and RSA (p = .03). In addition to sex, only heart period and age (both p <.001) were found to be independent predictors of ApEn, whereas RSA was also influenced by respiration rate and smoking (both p <.001). Age explained 16% and 6% of the variance in FSA and ApEn, respectively. Oral contraceptive use and menopausal status had no effect on HRV. Genetic model fitting yielded moderate heritability estimates for RSA (30%) and ApEn (40%) for both males and females. The correlation between RSA and ApEn (r = .60) could be attributed to genetic factors (48%), environmental factors (36%) and age (16%). The present study found support for a gender difference in HRV with women having greater HRV than men even after controlling for a large number of potential confounders. Indices of heart rate dynamics derived from nonlinear dynamical systems theory are moderately heritable and may be more sensitive than traditional indices of HRV to reveal subtle sex differences with important implications for health and disease

    The APOA5 Trp19 allele is associated with metabolic syndrome via its association with plasma triglycerides

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The goal of the present study was to assess the effect of genetic variability at the APOA5/A4/C3/A1 cluster locus on the risk of metabolic syndrome.</p> <p>Methods</p> <p>The <it>APOA5 </it>Ser19Trp, <it>APOA5 </it>-12,238T>C, <it>APOA4 </it>Thr347Ser, <it>APOC3 </it>-482C>T and <it>APOC3 </it>3238C>G (<it>Sst</it>I) polymorphisms were analyzed in a representative population sample of 3138 men and women from France, including 932 individuals with metabolic syndrome and 2206 without metabolic syndrome, as defined by the NCEP criteria.</p> <p>Results</p> <p>Compared with homozygotes for the common allele, the odds ratio (OR) [95% CI] for metabolic syndrome was 1.30 [1.03–1.66] (<it>p </it>= 0.03) for <it>APOA5 </it>Trp19 carriers, 0.81 [0.69–0.95] (<it>p </it>= 0.01) for <it>APOA5 </it>-12,238C carriers and 0.84 [0.70–0.99] (<it>p </it>= 0.04) for <it>APOA4 </it>Ser347 carriers. Adjustment for plasma triglycerides, (but not for waist girth, HDL, blood pressure or glycemia – the other components of metabolic syndrome) abolished these associations and suggests that triglyceride levels explain the association with metabolic syndrome. There was no association between the <it>APOC3 </it>-482C>T or <it>APOC3 </it>3238C>G polymorphisms and metabolic syndrome. The decreased risk of metabolic syndrome observed in <it>APOA5 </it>-12,238C and <it>APOA4 </it>Ser347 carriers merely reflected the fact that the <it>APOA5 </it>Trp19 allele was in negative linkage disequilibrium with the common alleles of <it>APOA5 </it>-12,238T>C and <it>APOA4 </it>Thr347Ser polymorphisms.</p> <p>Conclusion</p> <p>The <it>APOA5 </it>Trp19 allele increased susceptibility to metabolic syndrome via its impact on plasma triglyceride levels.</p

    Variants of ADRA2A are associated with fasting glucose, blood pressure, body mass index and type 2 diabetes risk: meta-analysis of four prospective studies

    Get PDF
    AIMS/HYPOTHESIS: We quantified the effect of ADRA2A (encoding α-2 adrenergic receptor) variants on metabolic traits and type 2 diabetes risk, as reported in four studies. METHODS: Genotype data for ADRA2A single nucleotide polymorphisms (SNPs) rs553668 and rs10885122 were analysed in >17,000 individuals (1,307 type 2 diabetes cases) with regard to metabolic traits and type 2 diabetes risk. Two studies (n = 9,437), genotyped using the Human Cardiovascular Disease BeadChip, provided 12 additional ADRA2A SNPs. RESULTS: Rs553668 was associated with per allele effects on fasting glucose (0.03 mmol/l, p = 0.016) and type 2 diabetes risk (OR 1.17, 95% CI 1.04-1.31; p = 0.01). No significant association was observed with rs10885122. Of the 12 SNPs, several showed associations with metabolic traits. Overall, after variable selection, rs553668 was associated with type 2 diabetes risk (OR 1.38, 95% CI 1.09-1.73; p = 0.007). rs553668 (per allele difference 0.036 mmol/l, 95% CI 0.008-0.065) and rs17186196 (per allele difference 0.066 mmol/l, 95% CI 0.017-0.115) were independently associated with fasting glucose, and rs17186196 with fasting insulin and HOMA of insulin resistance (4.3%, 95% CI 0.6-8.1 and 4.9%, 95% CI 1.0-9.0, respectively, per allele). Per-allele effects of rs491589 on systolic and diastolic blood pressure were 1.19 mmHg (95% CI 0.43-1.95) and 0.61 mmHg (95% CI 0.11-1.10), respectively, and those of rs36022820 on BMI 0.58 kg/m(2) (95% CI 0.15-1.02). CONCLUSIONS/INTERPRETATION: Multiple ADRA2A SNPs are associated with metabolic traits, blood pressure and type 2 diabetes risk. The α-2 adrenergic receptor should be revisited as a therapeutic target for reduction of the adverse consequences of metabolic trait disorders and type 2 diabetes
    corecore