109 research outputs found
Cancer stem cells in melanoma
The identification of cancer stem cells in various malignancies led to the hypothesis that these cells have the exclusive ability of self-renewal, contribute to the plasticity of the tumours and may be the cause for ineffective cancer therapies. Several markers of melanoma stem cells have been described in recent studies including CD133, CD166, Nestin and BMI-1. Further studies are necessary to identify, better define and understand the origin and function of cancer stem cells. If confirmed that cancer stem cells play an important role in malignancy, therapeutic strategies may need to be redirected towards these cells to circumvent the failure of conventional therapies
Differential influence of vemurafenib and dabrafenib on patients' lymphocytes despite similar clinical efficacy in melanoma
In this study, we demonstrate that vemurafenib but not dabrafenib reduces peripheral lymphocyte counts in melanoma patients while both agents show similar clinical efficacy. Within the lymphocyte compartment, vemurafenib selectively decreases circulating CD4+ T cells and changes their phenotype and function. This indicates that selective BRAFi need to be assessed individually for immunomodulatory effects, especially, when planning combinations with immunotherapie
Functional and symptom impact of trametinib versus chemotherapy in BRAF V600E advanced or metastatic melanoma: quality-of-life analyses of the METRIC study
We report the first quality-of-life assessment of a MEK inhibitor in metastatic melanoma from a phase III study. Trametinib prolonged progression-free survival and improved overall survival versus chemotherapy in patients with BRAF V600 mutation-positive melanoma. Less functional impairment, smaller declines in health status, and less exacerbation of symptoms were observed with trametini
Whole-cell cancer vaccination: from autologous to allogeneic tumor- and dendritic cell-based vaccines
The field of tumor vaccination is currently undergoing a shift in focus, from individualized tailor-made vaccines to more generally applicable vaccine formulations. Although primarily predicated by financial and logistic considerations, stemming from a growing awareness that clinical development for wide-scale application can only be achieved through backing from major pharmaceutical companies, these new approaches are also supported by a growing knowledge of the intricacies and minutiae of antigen presentation and effector T-cell activation. Here, the development of whole-cell tumor and dendritic cell (DC)-based vaccines from an individualized autologous set-up to a more widely applicable allogeneic approach will be discussed as reflected by translational studies carried out over the past two decades at our laboratories and clinics in the vrije universiteit medical center (VUmc) in Amsterdam, The Netherlands
Semiallogenic fusions of MSI+ tumor cells and activated B cells induce MSI-specific T cell responses
<p>Abstract</p> <p>Background</p> <p>Various strategies have been developed to transfer tumor-specific antigens into antigen presenting cells in order to induce cytotoxic T cell responses against tumor cells. One approach uses cellular vaccines based on fusions of autologous antigen presenting cells and allogeneic tumor cells. The fusion cells combine antigenicity of the tumor cell with optimal immunostimulatory capacity of the antigen presenting cells.</p> <p>Microsatellite instability caused by mutational inactivation of DNA mismatch repair genes results in translational frameshifts when affecting coding regions. It has been shown by us and others that these mutant proteins lead to the presentation of immunogenic frameshift peptides that are - in principle - recognized by a multiplicity of effector T cells.</p> <p>Methods</p> <p>We chose microsatellite instability-induced frameshift antigens as ideal to test for induction of tumor specific T cell responses by semiallogenic fusions of microsatellite instable carcinoma cells with CD40-activated B cells. Two fusion clones of HCT116 with activated B cells were selected for stimulation of T cells autologous to the B cell fusion partner. Outgrowing T cells were phenotyped and tested in functional assays.</p> <p>Results</p> <p>The fusion clones expressed frameshift antigens as well as high amounts of MHC and costimulatory molecules. Autologous T cells stimulated with these fusions were predominantly CD4<sup>+</sup>, activated, and reacted specifically against the fusion clones and also against the tumor cell fusion partner. Interestingly, a response toward 6 frameshift-derived peptides (of 14 tested) could be observed.</p> <p>Conclusion</p> <p>Cellular fusions of MSI<sup>+ </sup>carcinoma cells and activated B cells combine the antigen-presenting capacity of the B cell with the antigenic repertoire of the carcinoma cell. They present frameshift-derived peptides and can induce specific and fully functional T cells recognizing not only fusion cells but also the carcinoma cells. These hybrid cells may have great potential for cellular immunotherapy and this approach should be further analyzed in preclinical as well as clinical trials. Moreover, this is the first report on the induction of frameshift-specific T cell responses without the use of synthetic peptides.</p
Differential influence of vemurafenib and dabrafenib on patients’ lymphocytes despite similar clinical efficacy in melanoma
In this study, we demonstrate that vemurafenib but not dabrafenib reduces peripheral lymphocyte counts in melanoma patients while both agents show similar clinical efficacy. Within the lymphocyte compartment, vemurafenib selectively decreases circulating CD4+ T cells and changes their phenotype and function. This indicates that selective BRAFi need to be assessed individually for immunomodulatory effects, especially, when planning combinations with immunotherapie
Immunotherapy with allotumour mRNA-transfected dendritic cells in androgen-resistant prostate cancer patients
Here, we present results from a clinical trial employing a new vaccination method using dendritic cells (DCs) transfected with mRNA from allogeneic prostate cancer cell lines (DU145, LNCaP and PC-3). In all, 20 patients were enrolled and 19 have completed vaccination. Each patient received at least four weekly injections with 2 × 107 transfected DCs either intranodally or intradermally. Safety and feasibility of vaccination were determined. Immune responses were measured as delayed-type hypersensitivity and by in vitro immunoassays including ELISPOT and T-cell proliferation in pre- and postvaccination peripheral blood samples. Serum prostate-specific antigen (PSA) levels and bone scans were monitored. No toxicity or serious adverse events related to vaccinations were observed. A total of 12 patients developed a specific immune response to tumour mRNA-transfected DCs. In total, 13 patients showed a decrease in log slope PSA. This effect was strengthened by booster vaccinations. Clinical outcome was significantly related to immune responses (n=19, P=0.002, r=0.68). Vaccination with mRNA-transfected DCs is safe and results in cellular immune responses specific for antigens encoded by mRNA derived from the prostate cancer cell lines. The observation that in some patients vaccination affected the PSA level suggests that this approach may become useful as a treatment modality for prostate cancer patients
In vitro generation of cytotoxic and regulatory T cells by fusions of human dendritic cells and hepatocellular carcinoma cells
<p>Abstract</p> <p>Background</p> <p>Human hepatocellular carcinoma (HCC) cells express WT1 and/or carcinoembryonic antigen (CEA) as potential targets for the induction of antitumor immunity. In this study, generation of cytotoxic T lymphocytes (CTL) and regulatory T cells (Treg) by fusions of dendritic cells (DCs) and HCC cells was examined.</p> <p>Methods</p> <p>HCC cells were fused to DCs either from healthy donors or the HCC patient and investigated whether supernatants derived from the HCC cell culture (HCCsp) influenced on the function of DCs/HCC fusion cells (FCs) and generation of CTL and Treg.</p> <p>Results</p> <p>FCs coexpressed the HCC cells-derived WT1 and CEA antigens and DCs-derived MHC class II and costimulatory molecules. In addition, FCs were effective in activating CD4<sup>+ </sup>and CD8<sup>+ </sup>T cells able to produce IFN-γ and inducing cytolysis of autologous tumor or semiallogeneic targets by a MHC class I-restricted mechanism. However, HCCsp induced functional impairment of DCs as demonstrated by the down-regulation of MHC class I and II, CD80, CD86, and CD83 molecules. Moreover, the HCCsp-exposed DCs failed to undergo full maturation upon stimulation with the Toll-like receptor 4 agonist penicillin-inactivated <it>Streptococcus pyogenes</it>. Interestingly, fusions of immature DCs generated in the presence of HCCsp and allogeneic HCC cells promoted the generation of CD4<sup>+ </sup>CD25<sup>high </sup>Foxp3<sup>+ </sup>Treg and inhibited CTL induction in the presence of HCCsp. Importantly, up-regulation of MHC class II, CD80, and CD83 on DCs was observed in the patient with advanced HCC after vaccination with autologous FCs. In addition, the FCs induced WT1- and CEA-specific CTL that were able to produce high levels of IFN-γ.</p> <p>Conclusion</p> <p>The current study is one of the first demonstrating the induction of antigen-specific CTL and the generation of Treg by fusions of DCs and HCC cells. The local tumor-related factors may favor the generation of Treg through the inhibition of DCs maturation; however, fusion cell vaccination results in recovery of the DCs function and induction of antigen-specific CTL responses in vitro. The present study may shed new light about the mechanisms responsible for the generation of CTL and Treg by FCs.</p
Exploiting bacterial DNA gyrase as a drug target: current state and perspectives
DNA gyrase is a type II topoisomerase that can introduce negative supercoils into DNA at the expense of ATP hydrolysis. It is essential in all bacteria but absent from higher eukaryotes, making it an attractive target for antibacterials. The fluoroquinolones are examples of very successful gyrase-targeted drugs, but the rise in bacterial resistance to these agents means that we not only need to seek new compounds, but also new modes of inhibition of this enzyme. We review known gyrase-specific drugs and toxins and assess the prospects for developing new antibacterials targeted to this enzyme
- …