7 research outputs found
Metabolism-dependent bioaccumulation of uranium by Rhodosporidium toruloides isolated from the flooding water of a former uranium mine
Remediation of former uranium mining sites represents one of the biggest challenges worldwide
that have to be solved in this century. During the last years, the search of alternative
strategies involving environmentally sustainable treatments has started. Bioremediation,
the use of microorganisms to clean up polluted sites in the environment, is considered one
the best alternative. By means of culture-dependent methods, we isolated an indigenous
yeast strain, KS5 (Rhodosporidium toruloides), directly from the flooding water of a former
uranium mining site and investigated its interactions with uranium. Our results highlight
distinct adaptive mechanisms towards high uranium concentrations on the one hand, and
complex interaction mechanisms on the other. The cells of the strain KS5 exhibit high a
uranium tolerance, being able to grow at 6 mM, and also a high ability to accumulate this
radionuclide (350 mg uranium/g dry biomass, 48 h). The removal of uranium by KS5 displays
a temperature- and cell viability-dependent process, indicating that metabolic activity
could be involved. By STEM (scanning transmission electron microscopy) investigations,
we observed that uranium was removed by two mechanisms, active bioaccumulation and
inactive biosorption. This study highlights the potential of KS5 as a representative of indigenous
species within the flooding water of a former uranium mine, which may play a key role
in bioremediation of uranium contaminated sites.This work was supported by the
Bundesministerium fĂŒr Bildung und Forschung
grand nÂș 02NUK030F (TransAqua). Further support
took place by the ERDF-co-financed Grants
CGL2012-36505 and 315 CGL2014-59616R,
Ministerio de Ciencia e InnovaciĂłn, Spain
Propagation of Rhizopus javanicus Biosorbent
After propagation of Rhizopus javanicus in defined media containing glucose, urea, and mineral salts in deionized distilled water, the ability of the nonliving biomass to sequester cupric ion was assayed. Growth, uptake capacity (saturation uptake at >1 mM Cu(2+) concentration in solution), and biosorptive yield (biomass concentration Ă uptake capacity) were increased by augmentation of the growth medium with mineral salts once growth was under way. In the stationary phase, the uptake capacity of mycelia, which were normally a poor biosorbent, was improved within 4 h of trace metal addition to the growth medium. Growth of the culture was inhibited by excessive concentrations (0.04 to 40 ÎŒM) of metals in the medium in the following order: Cu > Co â„ Ni > Mn > Mo; zinc was not inhibitory at 40 ÎŒM, and chromium was stimulatory at 0.53 ÎŒM but slightly inhibitory at higher levels. Iron and potassium phosphate stimulated growth at levels of 0.53 and 40 mM, respectively. When R. javanicus was propagated in a medium with a high salt concentration, exponential growth (0.23 h(â1)) to a biomass concentration of >3 g/liter and a biosorptive yield of >500 ÎŒmol/liter was achieved. It is evident that the powerful biosorbent characteristics of Rhizopus biomass led to depletion of available trace minerals in suspension culture, which in turn limited growth