11 research outputs found

    Analyzing the Spread of Chagas Disease with Mobile Phone Data

    Full text link
    We use mobile phone records for the analysis of mobility patterns and the detection of possible risk zones of Chagas disease in two Latin American countries. We show that geolocalized call records are rich in social and individual information, which can be used to infer whether an individual has lived in an endemic area. We present two case studies, in Argentina and in Mexico, using data provided by mobile phone companies from each country. The risk maps that we generate can be used by health campaign managers to target specific areas and allocate resources more effectively.Comment: 6 pages, 6 figure

    Sequences of purchases in credit card data reveal life styles in urban populations

    Full text link
    Zipf-like distributions characterize a wide set of phenomena in physics, biology, economics and social sciences. In human activities, Zipf-laws describe for example the frequency of words appearance in a text or the purchases types in shopping patterns. In the latter, the uneven distribution of transaction types is bound with the temporal sequences of purchases of individual choices. In this work, we define a framework using a text compression technique on the sequences of credit card purchases to detect ubiquitous patterns of collective behavior. Clustering the consumers by their similarity in purchases sequences, we detect five consumer groups. Remarkably, post checking, individuals in each group are also similar in their age, total expenditure, gender, and the diversity of their social and mobility networks extracted by their mobile phone records. By properly deconstructing transaction data with Zipf-like distributions, this method uncovers sets of significant sequences that reveal insights on collective human behavior.Comment: 30 pages, 26 figure

    Fair and Decentralized Exchange of Digital Goods

    Get PDF
    We construct a privacy-preserving, distributed and decentralized marketplace where parties can exchange data for tokens. In this market, buyers and sellers make transactions in a blockchain and interact with a third party, called notary, who has the ability to vouch for the authenticity and integrity of the data. We introduce a protocol for the data-token exchange where neither party gains more information than what it is paying for, and the exchange is fair: either both parties gets the other's item or neither does. No third party involvement is required after setup, and no dispute resolution is needed.Comment: 10 page

    Inferring personal economic status from social network location

    Full text link
    It is commonly believed that patterns of social ties affect individuals’ economic status. Here we translate this concept into an operational definition at the network level, which allows us to infer the economic well-being of individuals through a measure of their location and influence in the social network.We analyse two large-scale sources: telecommunications and financial data of a whole country’s population. Our results show that an individual’s location, measured as the optimal collective influence to the structural integrity of the social network, is highly correlated with personal economic status. The observed social network patterns of influence mimic the patterns of economic inequality. For pragmatic use and validation, we carry out a marketing campaign that shows a threefold increase in response rate by targeting individuals identified by our social network metrics as compared to random targeting. Our strategy can also be useful in maximizing the effects of large-scale economic stimulus policies
    corecore