10,309 research outputs found

    The PHOENIX Exoplanet Retrieval Algorithm and Using H^{-} Opacity as a Probe in Ultra-hot Jupiters

    Full text link
    Atmospheric retrievals are now a standard tool to analyze observations of exoplanet atmospheres. This data-driven approach quantitatively compares atmospheric models to observations in order to estimate atmospheric properties and their uncertainties. In this paper, we introduce a new retrieval package, the PHOENIX Exoplanet Retrieval Analysis (PETRA). PETRA places the PHOENIX atmosphere model in a retrieval framework, allowing us to combine the strengths of a well-tested and widely-used atmosphere model with the advantages of retrieval algorithms. We validate PETRA by retrieving on simulated data for which the true atmospheric state is known. We also show that PETRA can successfully reproduce results from previously published retrievals of WASP-43b and HD 209458b. For the WASP-43b results, we show the effect that different line lists and line profile treatments have on the retrieved atmospheric properties. Lastly, we describe a novel technique for retrieving the temperature structure and ee^{-} density in ultra-hot Jupiters using H^{-} opacity, allowing us to probe atmospheres devoid of most molecular features with JWST.Comment: 17 pages, 18 figures. Accepted for publication in A

    The Influence of Host Star Spectral Type on Ultra-Hot Jupiter Atmospheres

    Get PDF
    Ultra-hot Jupiters are the most highly irradiated gas giant planets, with equilibrium temperatures from 2000 to over 4000 K. Ultra-hot Jupiters are amenable to characterization due to their high temperatures, inflated radii, and short periods, but their atmospheres are atypical for planets in that the photosphere possesses large concentrations of atoms and ions relative to molecules. Here we evaluate how the atmospheres of these planets respond to irradiation by stars of different spectral type. We find that ultra-hot Jupiters exhibit temperature inversions that are sensitive to the spectral type of the host star. The slope and temperature range across the inversion both increase as the host star effective temperature increases due to enhanced absorption at short wavelengths and low pressures. The steep temperature inversions in ultra-hot Jupiters around hot stars result in increased thermal dissociation and ionization compared to similar planets around cooler stars. The resulting increase in H^{-} opacity leads to a transit spectrum that has muted absorption features. The emission spectrum, however, exhibits a large contrast in brightness temperature, a signature that will be detectable with both secondary eclipse observations and high-dispersion spectroscopy. We also find that the departures from local thermodynamic equilibrium in the stellar atmosphere can affect the degree of heating caused by atomic metals in the planet's upper atmosphere. Additionally, we further quantify the significance of heating by different opacity sources in ultra-hot Jupiter atmospheres.Comment: 13 pages, 9 figures, 2 tables. Accepted for publication in Ap

    Growth and the expression of alternative life cycles in the salamander \u3ci\u3eAmbystoma talpoideum\u3c/i\u3e (Caudata: Ambystomatidae)

    Get PDF
    Complex life cycles (CLCs) contain larval and adult phases that are morphologically and ecologically distinct. Simple life cycles (SLCs) have evolved from CLCs repeatedly in a wide variety of lineages but the processes that may underlie the transition have rarely been identified or investigated experimentally. We examined the influence of larval growth rate on the facultative expression of alternative life cycles (metamorphosis or maturation as gill-bearing adults [= paedomorphosis]) in the salamander Ambystoma talpoideum. We manipulated growth rates by altering the amount of food individuals received throughout larval development. The expression of alternative life cycles in A. talpoideum is influenced by growth via food levels, but the same growth rates at different points in the larval period elicit different responses. Individuals were more likely to metamorphose (i.e. express a CLC) when food levels and growth rates were high later in development and more likely to mature without metamorphosing (SLC) when growth rates were comparatively low during the same point in development. Growth rates at particular points in development, rather than overall larval growth rate, may be an important proximate factor in salamander life-cycle evolution

    Introduction: Ain’t It Evil to Live Backwards? : A Hip Hop Perspective of Religion

    Get PDF
    Historically, Black religion has been the cornerstone of the African experience in America. Due to the peculiar institution” of slavery and the ways this institutional residue still affect the lives of slave descendants, Hip Hop provides a forum to simultaneously acknowledge similarities and highlight differences. What scholars of religion and Hip Hop studies have revealed are the ways in which the effectiveness and our very understanding of “religion” changes when we bring Hip Hop in to the mix

    Extremely Irradiated Hot Jupiters: Non-Oxide Inversions, H- Opacity, and Thermal Dissociation of Molecules

    Full text link
    Extremely irradiated hot Jupiters, exoplanets reaching dayside temperatures >{>}2000 K, stretch our understanding of planetary atmospheres and the models we use to interpret observations. While these objects are planets in every other sense, their atmospheres reach temperatures at low pressures comparable only to stellar atmospheres. In order to understand our \textit{a priori} theoretical expectations for the nature of these objects, we self-consistently model a number of extreme hot Jupiter scenarios with the PHOENIX model atmosphere code. PHOENIX is well-tested on objects from cool brown dwarfs to expanding supernovae shells and its expansive opacity database from the UV to far-IR make PHOENIX well-suited for understanding extremely irradiated hot Jupiters. We find several fundamental differences between hot Jupiters at temperatures >{>}2500 K and their cooler counterparts. First, absorption by atomic metals like Fe and Mg, molecules including SiO and metal hydrides, and continuous opacity sources like H^- all combined with the short-wavelength output of early-type host stars result in strong thermal inversions, without the need for TiO or VO. Second, many molecular species, including H2_2O, TiO, and VO are thermally dissociated at pressures probed by eclipse observations, biasing retrieval algorithms that assume uniform vertical abundances. We discuss other interesting properties of these objects, as well as future prospects and predictions for observing and characterizing this unique class of astrophysical object, including the first self-consistent model of the hottest known jovian planet, KELT-9b.Comment: 23 pages, 16 figures, 1 table. Submitted to Ap

    Astronomical, physical, and meteorological parameters for planetary atmospheres

    Get PDF
    A newly compiled table of astronomical, physical, and meteorological parameters for planetary atmospheres is presented. Formulae and explanatory notes for their application and a complete listing of sources are also given

    Consent Verification Under Evolving Privacy Policies

    Get PDF
    corecore