45 research outputs found

    Vector lattice model for stresses in granular materials

    Full text link
    A vector lattice model for stresses in granular materials is proposed. A two dimensional pile built by pouring from a point is constructed numerically according to this model. Remarkably, the pile violates the Mohr Coulomb stability criterion for granular matter, probably because of the inherent anisotropy of such poured piles. The numerical results are also compared to the earlier continuum FPA model and the (scalar) lattice qq-model

    Mixing patterns in networks

    Full text link
    We study assortative mixing in networks, the tendency for vertices in networks to be connected to other vertices that are like (or unlike) them in some way. We consider mixing according to discrete characteristics such as language or race in social networks and scalar characteristics such as age. As a special example of the latter we consider mixing according to vertex degree, i.e., according to the number of connections vertices have to other vertices: do gregarious people tend to associate with other gregarious people? We propose a number of measures of assortative mixing appropriate to the various mixing types, and apply them to a variety of real-world networks, showing that assortative mixing is a pervasive phenomenon found in many networks. We also propose several models of assortatively mixed networks, both analytic ones based on generating function methods, and numerical ones based on Monte Carlo graph generation techniques. We use these models to probe the properties of networks as their level of assortativity is varied. In the particular case of mixing by degree, we find strong variation with assortativity in the connectivity of the network and in the resilience of the network to the removal of vertices.Comment: 14 pages, 2 tables, 4 figures, some additions and corrections in this versio

    Preexercise breakfast ingestion versus extended overnight fasting increases postprandial glucose flux after exercise in healthy men

    Get PDF
    The aim of this study was to characterize postprandial glucose flux after exercise in the fed versus overnight fasted state and to investigate the potential underlying mechanisms. In a randomized order, twelve men underwent breakfast-rest [(BR) 3 h semirecumbent], breakfast-exercise [(BE) 2 h semirecumbent before 60 min of cycling (50% peak power output)], and overnight fasted exercise [(FE) as per BE omitting breakfast] trials. An oral glucose tolerance test (OGTT) was completed after exercise (after rest on BR). Dual stable isotope tracers ([U-13C] glucose ingestion and [6,6-2H2] glucose infusion) and muscle biopsies were combined to assess postprandial plasma glucose kinetics and intramuscular signaling, respectively. Plasma intestinal fatty acid binding (I-FABP) concentrations were determined as a marker of intestinal damage. Breakfast before exercise increased postexercise plasma glucose disposal rates during the OGTT, from 44 g/120 min in FE {35 to 53 g/120 min [mean (normalized 95% confidence interval)] to 73 g/120 min in BE [55 to 90 g/120 min; P = 0.01]}. This higher plasma glucose disposal rate was, however, offset by increased plasma glucose appearance rates (principally OGTT-derived), resulting in a glycemic response that did not differ between BE and FE (P = 0.11). Plasma I-FABP concentrations during exercise were 264 pg/ml (196 to 332 pg/ml) lower in BE versus FE (P = 0.01). Breakfast before exercise increases postexercise postprandial plasma glucose disposal, which is offset (primarily) by increased appearance rates of orally ingested glucose. Therefore, metabolic responses to fed-state exercise cannot be readily inferred from studies conducted in a fasted state
    corecore