46 research outputs found

    Changing the way we think about change: shifting boundaries changing lives

    Get PDF
    The 2012 Australian and New Zealand Critical Criminology Conference was held in Hobart over two days from 12 - 13 July.   This conference was organised around the theme of ‘Changing the Way We Think about Change – Shifting Boundaries, Changing Lives’. There were five general plenaries, including speakers from Australia, Canada, the United Kingdom, France and the United States, and the conference featured early career as well as experienced researchers. The plenaries included sessions on gender and imprisonment; the pursuit of truth and justice; Indigenous legal needs and justice reinvestment; policing and vulnerability; and migration and global security issues. This publication provides a sample of some of the presentations delivered at the 2012 Critical Criminology Conference

    Probiotics for the Control of Parasites: An Overview

    Get PDF
    Probiotics are defined as live organisms, which confer benefits to the host. Their efficiency was demonstrated for the treatment of gastrointestinal disorders, respiratory infections, and allergic symptoms, but their use is mostly limited to bacterial and viral diseases. During the last decade, probiotics as means for the control of parasite infections were reported covering mainly intestinal diseases but also some nongut infections, that are all of human and veterinary importance. In most cases, evidence for a beneficial effect was obtained by studies using animal models. In a few cases, cellular interactions between probiotics and pathogens or relevant host cells were also investigated using in vitro culture systems. However, molecular mechanisms mediating the beneficial effects are as yet poorly understood. These studies indicate that probiotics might indeed provide a strain-specific protection against parasites, probably through multiple mechanisms. But more unravelling studies are needed to justify probiotic utilisation in therapeutics

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    A Cross-Cultural View of Adults’ Perceptions of Children’s Rights

    No full text
    This study examined how the need for autonomy may be coexisting with current cultural norms. A total of 264 U.S., 76 Swiss, and 51 British adults completed two perceptions of children\u27s rights surveys. The results showed that Swiss and British participants were significantly more likely to advocate for autonomy or self-determination rights than same-aged U.S. adults. British participants were also more likely to advocate for children\u27s self-determination rights than U.S. and Swiss participants, whereas Swiss adults were more likely to grant children nurturance rights than British and US adults. Generally, parents were less likely to advocate for autonomy than non-parents. The results are discussed in terms of individualism--collectivism, self-determination theories, and parentalism

    Proline Betaine Uptake in Sinorhizobium meliloti: Characterization of Prb, an Opp-Like ABC Transporter Regulated by both Proline Betaine and Salinity Stress

    No full text
    Sinorhizobium meliloti uses proline betaine (PB) as an osmoprotectant when osmotically stressed and as an energy source in low-osmolarity environments. To fulfill this dual function, two separate PB transporters, BetS and Hut, that contribute to PB uptake at high and low osmolarity, respectively, have been previously identified. Here, we characterized a novel transport system that mediates the uptake of PB at both high and low osmolarities. Sequence analysis of Tn5-luxAB chromosomal insertions from several PB-inducible mutants has revealed the presence of a four-gene locus encoding the components of an ABC transporter, Prb, which belongs to the oligopeptide permease (Opp) family. Surprisingly, prb mutants were impaired in their ability to transport PB, and oligopeptides were not shown to be competitors for PB uptake. Further analysis of Prb specificity has shown its ability to take up other quaternary ammonium compounds such as choline and, to a lesser extent, glycine betaine. Interestingly, salt stress and PB were found to control prb expression in a positive and synergistic way and to increase Prb transport activity. At low osmolarity, Prb is largely implicated in PB uptake by stationary-phase cells, likely to provide PB as a source of carbon and nitrogen. Furthermore, at high osmolarity, the analysis of prb and betS single and double mutants demonstrated that Prb, together with BetS, is a key system for protection by PB

    Bile Salt Hydrolase Activities: A Novel Target to Screen Anti-Giardia Lactobacilli?

    No full text
    International audienceGiardia duodenalis is a protozoan parasite responsible for giardiasis, a disease characterized by intestinal malabsorption, diarrhea and abdominal pain in a large number of mammal species. Giardiasis is one of the most common intestinal parasitic diseases in the world and thus a high veterinary, and public health concern. It is well-established that some probiotic bacteria may confer protection against this parasite in vitro and in vivo and we recently documented the implication of bile-salt hydrolase (BSH)-like activities from strain La1 of Lactobacillus johnsonii as mediators of these effects in vitro. We showed that these activities were able to generate deconjugated bile salts that were toxic to the parasite. In the present study, a wide collection of lactobacilli strains from different ecological origins was screened to assay their anti-giardial effects. Our results revealed that the anti-parasitic effects of some of the strains tested were well-correlated with the expression of BSH-like activities. The two most active strains in vitro, La1 and Lactobacillus gasseri CNCM I-4884, were then tested for their capacity to influence G. duodenalis infection in a suckling mice model. Strikingly, only L. gasseri CNCM I-4884 strain was able to significantly antagonize parasite growth with a dramatic reduction of the trophozoites load in the small intestine. Moreover, this strain also significantly reduced the fecal excretion of Giardia cysts after 5 days of treatment, which could contribute to blocking the transmission of the parasite, in contrast of La1 where no effect was observed. This study represents a step toward the development of new prophylactic strategies to combat G. duodenalis infection in both humans and animals

    A study of autophagy in hemocytes of the Pacific oyster, Crassostrea gigas

    No full text
    Macroautophagy is a mechanism that is involved in various cellular processes, including cellular homeostasis and innate immunity. This pathway has been described in organisms ranging in complexity from yeasts to mammals, and recent results indicate that it occurs in the mantle of the Pacific oyster, Crassostrea gigas. However, the autophagy pathway has never been explored in the hemocytes of C. gigas, which are the main effectors of its immune system and thus play a key role in the defence of the Pacific oyster against pathogens. To investigate autophagy in oyster hemocytes, tools currently used to monitor this mechanism in mammals, including flow cytometry, fluorescent microscopy and transmission electron microscopy, were adapted and applied to the hemocytes of the Pacific oyster. Oysters were exposed for 24 and 48 h to either an autophagy inducer (carbamazepine, which increases the production of autophagosomes) or an autophagy inhibitor (ammonium chloride, which prevents the degradation of autophagosomes). Autophagy was monitored in fresh hemocytes withdrawn from the adductor muscles of oysters using a combination of the three aforementioned methods. We successfully labelled autophagosomes and observed them by flow cytometry and fluorescence microscopy, and then used electron microscopy to observe ultrastructural modifications related to autophagy, including the presence of double-membrane-bound vacuoles. Our results demonstrated that autophagy occurs in hemocytes of C. gigas and can be modulated by molecules known to modulate autophagy in other organisms. This study describes an integrated approach that can be applied to investigate autophagy in marine bivalves at the cellular level
    corecore