2,034 research outputs found

    Observation of the phononic Lamb shift with a synthetic vacuum

    Full text link
    The quantum vacuum fundamentally alters the properties of embedded particles. In contrast to classical empty space, it allows for creation and annihilation of excitations. For trapped particles this leads to a change in the energy spectrum, known as Lamb shift. Here, we engineer a synthetic vacuum building on the unique properties of ultracold atomic gas mixtures. This system makes it possible to combine high-precision spectroscopy with the ability of switching between empty space and quantum vacuum. We observe the phononic Lamb shift, an intruiguing many-body effect orginally conjectured in the context of solid state physics. Our study therefore opens up new avenues for high-precision benchmarking of non-trivial theoretical predictions in the realm of the quantum vacuum

    Modification of surface energy in nuclear multifragmentation

    Get PDF
    Within the statistical multifragmentation model we study modifications of the surface and symmetry energy of primary fragments in the freeze-out volume. The ALADIN experimental data on multifragmentation obtained in reactions induced by high-energy projectiles with different neutron richness are analyzed. We have extracted the isospin dependence of the surface energy coefficient at different degrees of fragmentation. We conclude that the surface energy of hot fragments produced in multifragmentation reactions differs from the values extracted for isolated nuclei at low excitation. At high fragment multiplicity, it becomes nearly independent of the neutron content of the fragments.Comment: 11 pages with 13 figure

    State-Dependent Optical Lattices for the Strontium Optical Qubit

    No full text
    We demonstrate state-dependent optical lattices for the Sr optical qubit at the tune-out wavelength for its ground state. We tightly trap excited state atoms while suppressing the effect of the lattice on ground state atoms by more than four orders of magnitude. This highly independent control over the qubit states removes inelastic excited state collisions as the main obstacle for quantum simulation and computation schemes based on the Sr optical qubit. Our results also reveal large discrepancies in the atomic data used to calibrate the largest systematic effect of Sr optical lattice clocks.Comment: 6 pages, 4 figures + 6 pages supplemental materia

    Swift heavy ion induced radiation damage in EuPO4EuPO_4

    Get PDF

    Flow probe of symmetry energy in relativistic heavy-ion reactions

    Get PDF
    Flow observables in heavy-ion reactions at incident energies up to about 1 GeV per nucleon have been shown to be very useful for investigating the reaction dynamics and for determining the parameters of reaction models based on transport theory. In particular, the elliptic flow in collisions of neutron-rich heavy-ion systems emerges as an observable sensitive to the strength of the symmetry energy at supra-saturation densities. The comparison of ratios or differences of neutron and proton flows or neutron and hydrogen flows with predictions of transport models favors an approximately linear density dependence, consistent with ab-initio nuclear-matter theories. Extensive parameter searches have shown that the model dependence is comparable to the uncertainties of existing experimental data. Comprehensive new flow data of high accuracy, partly also through providing stronger constraints on model parameters, can thus be expected to improve our knowledge of the equation of state of asymmetric nuclear matter.Comment: 20 pages, 24 figures, review to appear in EPJA special volume on nuclear symmetry energ

    Raman measurements of heavy ion irradiated water-bearing minerals

    Get PDF

    Optimized etching of swift heavy ion tracks in calcite

    Get PDF

    Online Raman on M-branch : First results

    Get PDF
    corecore