1,709 research outputs found
Contrasting roles of axonal (pyramidal cell) and dendritic (interneuron) electrical coupling in the generation of neuronal network oscillations
Electrical coupling between pyramidal cell axons, and between interneuron dendrites, have both been described in the hippocampus. What are the functional roles of the two types of coupling? Interneuron gap junctions enhance synchrony of γ oscillations (25-70 Hz) in isolated interneuron networks and also in networks containing both interneurons and principal cells, as shown in mice with a knockout of the neuronal (primarily interneuronal) connexin36. We have recently shown that pharmacological gap junction blockade abolishes kainate-induced γ oscillations in connexin36 knockout mice; without such gap junction blockade, γ oscillations do occur in the knockout mice, albeit at reduced power compared with wild-type mice. As interneuronal dendritic electrical coupling is almost absent in the knockout mice, these pharmacological data indicate a role of axonal electrical coupling in generating the γ oscillations. We construct a network model of an experimental γ oscillation, known to be regulated by both types of electrical coupling. In our model, axonal electrical coupling is required for the γ oscillation to occur at all; interneuron dendritic gap junctions exert a modulatory effect
Baseline data of a population-based cohort of patients with diabetes in Switzerland (CoDiab-VD)
QUESTIONS UNDER STUDY: To describe a population-based sample of patients with diabetes and the quality of their care in the canton of Vaud, Switzerland, as a baseline measure for the evaluation of the "Programme cantonal Diabète".
METHODS: We conducted a self-administered paper-based questionnaire survey. Non-institutionalised adult (aged ≥18 years) patients with diabetes diagnosed for at least 1 year and residing in the canton of Vaud were recruited by community pharmacies. Women with gestational diabetes, people with obvious cognitive impairment or people not sufficiently fluent in French were excluded. Primary outcomes were recommended processes-of-care and outcomes of care (glycosylated haemoglobin [HbA1c], generic and disease-specific health-related quality of life (HRQoL), overall care score in relation to the Chronic Care Model). Other measures included diabetes education, self-management support and self-efficacy, health status, health behaviour and demographics.
RESULTS: A total of 519 patients with diabetes were included. Whereas the mean HbA1c level was 7.3% (n = 177, 95% confidence interval 7.1-7.5), diabetes-specific processes-of-care and influenza vaccination were reported by less than two-thirds of the patients. Physical activity and diet recommendations results mirrored patients' difficulties with their management in daily life and diabetes-specific HRQoL was worst in the dimensions relative to diet (eating and drinking) and sex life. A minority of patients reported ever having participated in diabetes education courses (32.8%). Overall, patients were satisfied with their care and the support they received.
CONCLUSIONS: This study provides a broad picture of the experiences of people living with diabetes in the canton of Vaud. It shall guide the development of targeted interventions within the "Programme cantonal Diabète"
Awareness and practices regarding eye diseases among patients with diabetes: a cross sectional analysis of the CoDiab-VD cohort.
The increasing prevalence of diabetes is leading to a rise of eye diseases, augmenting the risk of sight-threatening complications. The aim of this study was to evaluate prevalence, awareness and practices regarding eye diseases among patients with diabetes in the canton of Vaud, Switzerland.
A cohort of 323 patients with diabetes completed a self-administered questionnaire assessing prevalence, awareness and practices regarding eye diseases, besides health status and quality of care measures. Descriptive analyses followed by exploratory subgroup analyses and linear regressions were performed to investigate factors associated with awareness and practices.
While diabetic retinopathy was reported by 40.9% of patients with type 1 diabetes and 9.8% of patients with type 2 diabetes, 35.8% and 12.6% of all participants reported cataract and glaucoma, respectively. Awareness that diabetes could damage the eyes was reported by almost all participants; the majority was also aware of the importance of glycemic control and regular eye examination in preventing eye diseases. In contrast, only 70.5% of participants underwent an eye examination by an ophthalmologist during the past year. Eye examination was associated with better patients' awareness. Barriers mentioned by patients revealed a lack of knowledge about screening guidelines, in particular regarding the preventive nature of eye examinations.
Despite high levels of awareness regarding diabetic eye diseases, a significant proportion of patients with diabetes did not report annual eye examination. Both healthcare strategic efforts targeting the promotion of regular eye examination and initiatives aiming at improving knowledge of screening guidelines should be encouraged.
ClinicalTrials.gov on 9th July 2013, identifier NCT01902043 (retrospectively registered)
Synchronized dynamics of cortical neurons with time-delay feedback
The dynamics of three mutually coupled cortical neurons with time delays in
the coupling are explored numerically and analytically. The neurons are coupled
in a line, with the middle neuron sending a somewhat stronger projection to the
outer neurons than the feedback it receives, to model for instance the relay of
a signal from primary to higher cortical areas. For a given coupling
architecture, the delays introduce correlations in the time series at the
time-scale of the delay. It was found that the middle neuron leads the outer
ones by the delay time, while the outer neurons are synchronized with zero lag
times. Synchronization is found to be highly dependent on the synaptic time
constant, with faster synapses increasing both the degree of synchronization
and the firing rate. Analysis shows that presynaptic input during the
interspike interval stabilizes the synchronous state, even for arbitrarily weak
coupling, and independent of the initial phase. The finding may be of
significance to synchronization of large groups of cells in the cortex that are
spatially distanced from each other.Comment: 21 pages, 11 figure
Physical Orbit for Lambda Virginis and a Test of Stellar Evolution Models
Lambda Virginis (LamVir) is a well-known double-lined spectroscopic Am binary
with the interesting property that both stars are very similar in abundance but
one is sharp-lined and the other is broad-lined. We present combined
interferometric and spectroscopic studies of LamVir. The small scale of the
LamVir orbit (~20 mas) is well resolved by the Infrared Optical Telescope Array
(IOTA), allowing us to determine its elements as well as the physical
properties of the components to high accuracy. The masses of the two stars are
determined to be 1.897 Msun and 1.721 Msun, with 0.7% and 1.5% errors
respectively, and the two stars are found to have the same temperature of 8280
+/- 200 K. The accurately determined properties of LamVir allow comparisons
between observations and current stellar evolution models, and reasonable
matches are found. The best-fit stellar model gives LamVir a subsolar
metallicity of Z=0.0097, and an age of 935 Myr. The orbital and physical
parameters of LamVir also allow us to study its tidal evolution time scales and
status. Although currently atomic diffusion is considered to be the most
plausible cause of the Am phenomenon, the issue is still being actively debated
in the literature. With the present study of the properties and evolutionary
status of LamVir, this system is an ideal candidate for further detailed
abundance analyses that might shed more light on the source of the chemical
anomalies in these A stars.Comment: 43 Pages, 13 figures. Accepted for publication in Ap
Response of electrically coupled spiking neurons: a cellular automaton approach
Experimental data suggest that some classes of spiking neurons in the first
layers of sensory systems are electrically coupled via gap junctions or
ephaptic interactions. When the electrical coupling is removed, the response
function (firing rate {\it vs.} stimulus intensity) of the uncoupled neurons
typically shows a decrease in dynamic range and sensitivity. In order to assess
the effect of electrical coupling in the sensory periphery, we calculate the
response to a Poisson stimulus of a chain of excitable neurons modeled by
-state Greenberg-Hastings cellular automata in two approximation levels. The
single-site mean field approximation is shown to give poor results, failing to
predict the absorbing state of the lattice, while the results for the pair
approximation are in good agreement with computer simulations in the whole
stimulus range. In particular, the dynamic range is substantially enlarged due
to the propagation of excitable waves, which suggests a functional role for
lateral electrical coupling. For probabilistic spike propagation the Hill
exponent of the response function is , while for deterministic spike
propagation we obtain , which is close to the experimental values
of the psychophysical Stevens exponents for odor and light intensities. Our
calculations are in qualitative agreement with experimental response functions
of ganglion cells in the mammalian retina.Comment: 11 pages, 8 figures, to appear in the Phys. Rev.
Exoplanets and SETI
The discovery of exoplanets has both focused and expanded the search for
extraterrestrial intelligence. The consideration of Earth as an exoplanet, the
knowledge of the orbital parameters of individual exoplanets, and our new
understanding of the prevalence of exoplanets throughout the galaxy have all
altered the search strategies of communication SETI efforts, by inspiring new
"Schelling points" (i.e. optimal search strategies for beacons). Future efforts
to characterize individual planets photometrically and spectroscopically, with
imaging and via transit, will also allow for searches for a variety of
technosignatures on their surfaces, in their atmospheres, and in orbit around
them. In the near-term, searches for new planetary systems might even turn up
free-floating megastructures.Comment: 9 page invited review. v2 adds some references and v3 has other minor
additions and modification
Synchronisation in networks of delay-coupled type-I excitable systems
We use a generic model for type-I excitability (known as the SNIPER or SNIC
model) to describe the local dynamics of nodes within a network in the presence
of non-zero coupling delays. Utilising the method of the Master Stability
Function, we investigate the stability of the zero-lag synchronised dynamics of
the network nodes and its dependence on the two coupling parameters, namely the
coupling strength and delay time. Unlike in the FitzHugh-Nagumo model (a model
for type-II excitability), there are parameter ranges where the stability of
synchronisation depends on the coupling strength and delay time. One important
implication of these results is that there exist complex networks for which the
adding of inhibitory links in a small-world fashion may not only lead to a loss
of stable synchronisation, but may also restabilise synchronisation or
introduce multiple transitions between synchronisation and desynchronisation.
To underline the scope of our results, we show using the Stuart-Landau model
that such multiple transitions do not only occur in excitable systems, but also
in oscillatory ones.Comment: 10 pages, 9 figure
Mechanisms explaining transitions between tonic and phasic firing in neuronal populations as predicted by a low dimensional firing rate model
Several firing patterns experimentally observed in neural populations have
been successfully correlated to animal behavior. Population bursting, hereby
regarded as a period of high firing rate followed by a period of quiescence, is
typically observed in groups of neurons during behavior. Biophysical
membrane-potential models of single cell bursting involve at least three
equations. Extending such models to study the collective behavior of neural
populations involves thousands of equations and can be very expensive
computationally. For this reason, low dimensional population models that
capture biophysical aspects of networks are needed.
\noindent The present paper uses a firing-rate model to study mechanisms that
trigger and stop transitions between tonic and phasic population firing. These
mechanisms are captured through a two-dimensional system, which can potentially
be extended to include interactions between different areas of the nervous
system with a small number of equations. The typical behavior of midbrain
dopaminergic neurons in the rodent is used as an example to illustrate and
interpret our results.
\noindent The model presented here can be used as a building block to study
interactions between networks of neurons. This theoretical approach may help
contextualize and understand the factors involved in regulating burst firing in
populations and how it may modulate distinct aspects of behavior.Comment: 25 pages (including references and appendices); 12 figures uploaded
as separate file
- …
