245 research outputs found

    Doppler-tuned Bragg Spectroscopy of Excited Levels in He-Like Uranium: a discussion of the uncertainty contributions

    Full text link
    We present the uncertainty discussion of a recent experiment performed at the GSI storage ring ESR for the accurate energy measurement of the He-like uranium 1s2p3P2- 1s2s3S1 intra-shell transition. For this propose we used a Johann-type Bragg spectrometer that enables to obtain a relative energy measurement between the He-like uranium transition, about 4.51 keV, and a calibration x-ray source. As reference, we used the Ka fluorescence lines of zinc and the Li-like uranium 1s22p2P3/2 - 1 s22s 2S1/2 intra-shell transition from fast ions stored in the ESR. A comparison of the two different references, i.e., stationary and moving x-ray source, and a discussion of the experimental uncertainties is presented

    Doppler-tuned Bragg Spectroscopy of Excited Levels in He-Like Uranium: a discussion of the uncertainty contributions

    Full text link
    We present the uncertainty discussion of a recent experiment performed at the GSI storage ring ESR for the accurate energy measurement of the He-like uranium 1s2p3P2- 1s2s3S1 intra-shell transition. For this propose we used a Johann-type Bragg spectrometer that enables to obtain a relative energy measurement between the He-like uranium transition, about 4.51 keV, and a calibration x-ray source. As reference, we used the Ka fluorescence lines of zinc and the Li-like uranium 1s22p2P3/2 - 1 s22s 2S1/2 intra-shell transition from fast ions stored in the ESR. A comparison of the two different references, i.e., stationary and moving x-ray source, and a discussion of the experimental uncertainties is presented

    Doppler-tuned Bragg Spectroscopy of Excited Levels in He-Like Uranium: a discussion of the uncertainty contributions

    Full text link
    We present the uncertainty discussion of a recent experiment performed at the GSI storage ring ESR for the accurate energy measurement of the He-like uranium 1s2p3P2- 1s2s3S1 intra-shell transition. For this propose we used a Johann-type Bragg spectrometer that enables to obtain a relative energy measurement between the He-like uranium transition, about 4.51 keV, and a calibration x-ray source. As reference, we used the Ka fluorescence lines of zinc and the Li-like uranium 1s22p2P3/2 - 1 s22s 2S1/2 intra-shell transition from fast ions stored in the ESR. A comparison of the two different references, i.e., stationary and moving x-ray source, and a discussion of the experimental uncertainties is presented

    Relational Quantum Mechanics and Probability

    Full text link
    We present a derivation of the third postulate of Relational Quantum Mechanics (RQM) from the properties of conditional probabilities.The first two RQM postulates are based on the information that can be extracted from interaction of different systems, and the third postulate defines the properties of the probability function. Here we demonstrate that from a rigorous definition of the conditional probability for the possible outcomes of different measurements, the third postulate is unnecessary and the Born's rule naturally emerges from the first two postulates by applying the Gleason's theorem. We demonstrate in addition that the probability function is uniquely defined for classical and quantum phenomena. The presence or not of interference terms is demonstrated to be related to the precise formulation of the conditional probability where distributive property on its arguments cannot be taken for granted. In the particular case of Young's slits experiment, the two possible argument formulations correspond to the possibility or not to determine the particle passage through a particular path.Comment: Foundations of Physics, Springer Verlag, 201

    Mean shift cluster recognition method implementation in the nested sampling algorithm

    Get PDF
    Nested sampling is an efficient algorithm for the calculation of the Bayesian evidence and posterior parameter probability distributions. It is based on the step-by-step exploration of the parameter space by Monte Carlo sampling with a series of values sets called live points that evolve towards the region of interest, i.e. where the likelihood function is maximal. In presence of several local likelihood maxima, the algorithm converges with difficulty. Some systematic errors can also be introduced by unexplored parameter volume regions. In order to avoid this, different methods are proposed in the literature for an efficient search of new live points, even in presence of local maxima. Here we present a new solution based on the mean shift cluster recognition method implemented in a random walk search algorithm. The clustering recognition is integrated within the Bayesian analysis program NestedFit. It is tested with the analysis of some difficult cases. Compared to the analysis results without cluster recognition, the computation time is considerably reduced. At the same time, the entire parameter space is efficiently explored, which translates into a smaller uncertainty of the extracted value of the Bayesian evidence

    Investigation of slow collisions for (quasi) symmetric heavy systems: what can be extracted from high resolution X-ray spectra

    Full text link
    We present a new experiment on (quasi) symmetric collision systems at low-velocity, namely Ar17+^{17+} ions (v=0.53v=0.53 a.u.) on gaseous Ar and N2_2 targets, using low- and high-resolution X-ray spectroscopy. Thanks to an accurate efficiency calibration of the spectrometers, we extract absolute X-ray emission cross sections combining low-resolution X-ray spectroscopy and a complete determination of the ion beam - gas jet target overlap. Values with improved uncertainty are found in agreement with previous results \cite{Tawara2001}. Resolving the whole He-like Ar16+^{16+} Lyman series from n=2n=2 to 10 with our crystal spectrometer enables to determine precisely the distribution Pn{\mathcal{P}_n} of the electron capture probability and the preferential nprefn_{pref} level of the selective single-electron capture. Evaluation of cross sections for this process as well as for the contribution of multiple-capture is carried out. Their sensitivity to the \ell-distribution of nn levels populated by single-electron capture is clearly demonstrated, providing a stringent benchmark for theories. In addition, the hardness ratio is extracted and the influence of the decay of the metastable 1s2s 3S11s2s\ ^3 S_1 state on this ratio is discussed

    Extension of charge-state-distribution calculations for ion-solid collisions towards low velocities and many-electron ions

    Get PDF
    Knowledge of the detailed evolution of the whole charge-state distribution of projectile ions colliding with targets is required in several fields of research such as material science and atomic and nuclear physics but also in accelerator physics, and in particular in regard to the several foreseen large-scale facilities. However, there is a lack of data for collisions in the nonperturbative energy domain and that involve many-electron projectiles. Starting from the etacha model we developed [Rozet, Nucl. Instrum. Methods Phys. Res., Sect. B 107, 67 (1996)10.1016/0168-583X(95)00800-4], we present an extension of its validity domain towards lower velocities and larger distortions. Moreover, the system of rate equations is able to take into account ions with up to 60 orbital states of electrons. The computed data from the different new versions of the etacha code are compared to some test collision systems. The improvements made are clearly illustrated by 28.9MeVu-1Pb56+ ions, and laser-generated carbon ion beams of 0.045 to 0.5MeVu-1, passing through carbon or aluminum targets, respectively. Hence, those new developments can efficiently sustain the experimental programs that are currently in progress on the "next-generation" accelerators or laser facilities.Fil: Lamour, E.. Centre National de la Recherche Scientifique; Francia. Universite de Paris; FranciaFil: Fainstein, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Galassi, Mariel Elisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Prigent, C.. Centre National de la Recherche Scientifique; Francia. Universite de Paris; FranciaFil: Ramirez, C. A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Rivarola, Roberto Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Rozet, J. P.. Centre National de la Recherche Scientifique; Francia. Universite de Paris; FranciaFil: Trassinelli, M.. Centre National de la Recherche Scientifique; Francia. Universite de Paris; FranciaFil: Vernhet, D.. Centre National de la Recherche Scientifique; Francia. Universite de Paris; Franci
    corecore