3 research outputs found

    Understorey light quality affects leaf pigments and leaf phenology in different plant functional types

    Get PDF
    Forest understorey plants receive most sunlight in springtime before canopy closure, and in autumn following leaf-fall. We hypothesized that plant species must adjust their phenological and photoprotective strategies in response to large changes in the spectral composition of the sunlight they receive. Here, we identified how plant species growing in northern deciduous and evergreen forest understoreys differ in their response to blue light and ultraviolet (UV) radiation according to their functional strategy. We installed filters in a forest understorey in southern Finland, to create the following treatments attenuating: UV radiation < 350 nm, all UV radiation (< 400 nm), all blue light and UV radiation (< 500 nm), and a transparent control. In eight species, representing different functional strategies, we assessed leaf optical properties, phenology, and epidermal flavonoid contents over two years. Blue light accelerated leaf senescence in all species measured in the understorey, apart from Quercus robur seedlings, whereas UV radiation only accelerated leaf senescence in Acer platanoides seedlings. More light-demanding species accumulated flavonols in response to seasonal changes in light quality compared to shade-tolerant and wintergreen species and were particularly responsive to blue light. Reduction of blue and UV radiation under shade reveals an important role for microclimatic effects on autumn phenology and leaf photoprotection. An extension of canopy cover under climate change, and its associated suppression of understorey blue light and UV radiation, may delay leaf senescence for understorey species with an autumn niche.Peer reviewe

    Innate, translation-dependent silencing of an invasive transposon in Arabidopsis

    No full text
    The dataset contains all the original raw files for protein and RNA blots, qPCR and Sanger sequencing trace data and additional raw data, sorted by figure and figure panel

    Innate, translation-dependent silencing of an invasive transposon in Arabidopsis

    No full text
    Co-evolution between hosts' and parasites' genomes shapes diverse pathways of acquired immunity based on silencing small (s)RNAs. In plants, sRNAs cause heterochromatinization, sequence degeneration, and, ultimately, loss of autonomy of most transposable elements (TEs). Recognition of newly invasive plant TEs, by contrast, involves an innate antiviral-like silencing response. To investigate this response's activation, we studied the single-copy element EVADÉ (EVD), one of few representatives of the large Ty1/Copia family able to proliferate in Arabidopsis when epigenetically reactivated. In Ty1/Copia elements, a short subgenomic mRNA (shGAG) provides the necessary excess of structural GAG protein over the catalytic components encoded by the full-length genomic flGAG-POL. We show here that the predominant cytosolic distribution of shGAG strongly favors its translation over mostly nuclear flGAG-POL. During this process, an unusually intense ribosomal stalling event coincides with mRNA breakage yielding unconventional 5'OH RNA fragments that evade RNA quality control. The starting point of sRNA production by RNA-DEPENDENT-RNA-POLYMERASE-6 (RDR6), exclusively on shGAG, occurs precisely at this breakage point. This hitherto-unrecognized "translation-dependent silencing" (TdS) is independent of codon usage or GC content and is not observed on TE remnants populating the Arabidopsis genome, consistent with their poor association, if any, with polysomes. We propose that TdS forms a primal defense against EVD de novo invasions that underlies its associated sRNA pattern.ISSN:1469-221XISSN:1469-317
    corecore