165 research outputs found

    Investigation of Single Boron Acceptors at the Cleaved Si:B (111) Surface

    Full text link
    The cleaved and (2 x 1) reconstructed (111) surface of p-type Si is investigated by scanning tunneling microscopy (STM). Single B acceptors are identified due to their characteristic voltage-dependent contrast which is explained by a local energetic shift of the electronic density of states caused by the Coulomb potential of the negatively charged acceptor. In addition, detailed analysis of the STM images shows that apparently one orbital is missing at the B site at sample voltages of 0.4 - 0.6 V, corresponding to the absence of a localized dangling-bond state. Scanning tunneling spectroscopy confirms a strongly altered density of states at the B atom due to the different electronic structure of B compared to Si.Comment: 6 pages, 7 figure

    Critical Behavior of the Conductivity of Si:P at the Metal-Insulator Transition under Uniaxial Stress

    Full text link
    We report new measurements of the electrical conductivity sigma of the canonical three-dimensional metal-insulator system Si:P under uniaxial stress S. The zero-temperature extrapolation of sigma(S,T -> 0) ~\S - S_c\^mu shows an unprecidentedly sharp onset of finite conductivity at S_c with an exponent mu = 1. The value of mu differs significantly from that of earlier stress-tuning results. Our data show dynamical sigma(S,T) scaling on both metallic and insulating sides, viz. sigma(S,T) = sigma_c(T) F(\S - S_cT^y) where sigma_c(T) is the conductivity at the critical stress S_c. We find y = 1/znu = 0.34 where nu is the correlation-length exponent and z the dynamic critical exponent.Comment: 5 pages, 4 figure

    Effects of Magnetic Order on the Upper Critical Field of UPt3_3

    Full text link
    I present a Ginzburg-Landau theory for hexagonal oscillations of the upper critical field of UPt3_3 near TcT_c. The model is based on a 2D2D representation for the superconducting order parameter, η=(η1,η2)\vec{\eta}=(\eta_1,\eta_2), coupled to an in-plane AFM order parameter, ms\vec{m}_s. Hexagonal anisotropy of Hc2H_{c2} arises from the weak in-plane anisotropy energy of the AFM state and the coupling of the superconducting order parameter to the staggered field. The model explains the important features of the observed hexagonal anisotropy [N. Keller, {\it et al.}, Phys. Rev. Lett. {\bf 73}, 2364 (1994).] including: (i) the small magnitude, (ii) persistence of the oscillations for TTcT\rightarrow T_c, and (iii) the change in sign of the oscillations for T>TT> T^{*} and T<TT< T^{*} (the temperature at the tetracritical point). I also show that there is a low-field crossover (observable only very near TcT_c) below which the oscillations should vanish.Comment: 9 pages in a RevTex (3.0) file plus 2 postscript figures (uuencoded). Submitted to Physical Review B (December 20, 1994)

    Influence of a magnetic field on the antiferromagnetic order in UPt_3

    Full text link
    A neutron diffraction experiment was performed to investigate the effect of a magnetic field on the antiferromagnetic order in the heavy fermion superconductor UPt_3. Our results show that a field in the basal plane of up to 3.2 Tesla, higher than H_c2(0), has no effect: it can neither select a domain nor rotate the moment. This has a direct impact on current theories for the superconducting phase diagram based on a coupling to the magnetic order.Comment: 7 pages, RevTeX, 3 postscript figures, submitted to Phys. Rev.

    Magnetic Field Effects on Neutron Diffraction in the Antiferromagnetic Phase of UPt3UPt_3

    Get PDF
    We discuss possible magnetic structures in UPt3_3 based on our analysis of elastic neutron-scattering experiments in high magnetic fields at temperatures T<TNT<T_N. The existing experimental data can be explained by a single-{\bf q} antiferromagnetic structure with three independent domains. For modest in-plane spin-orbit interactions, the Zeeman coupling between the antiferromagnetic order parameter and the magnetic field induces a rotation of the magnetic moments, but not an adjustment of the propagation vector of the magnetic order. A triple-{\bf q} magnetic structure is also consistent with neutron experiments, but in general leads to a non-uniform magnetization in the crystal. New experiments could decide between these structures.Comment: 5 figures included in the tex

    Unconventional Pairing in Heavy Fermion Metals

    Full text link
    The Fermi-liquid theory of superconductivity is applicable to a broad range of systems that are candidates for unconventional pairing. Fundamental differences between unconventional and conventional anisotropic superconductors are illustrated by the unique effects that impurities have on the low-temperature transport properties of unconventional superconductors. For special classes of unconventional superconductors the low-temperature transport coefficients are {\it universal}, i.e. independent of the impurity concentration and scattering phase shift. The existence of a universal limit depends on the symmetry of the order parameter and is achieved at low temperatures kBTγΔ0k_B T \ll \gamma \ll \Delta_0, where γ\gamma is the bandwidth of the impurity induced Andreev bound states. In the case of UPt3_3 thermal conductivity measurements favor an E1gE_{1g} or E2uE_{2u} ground state. Measurements at ultra-low temperatures should distinguish different pairing states.Comment: 8 pages in a LaTex (3.0) file plus 5 Figures in PostScript. To appear in the Proceedings of the XXI International Conference on Low Temperature Physics held in Prague, 8-14 August 199

    Superconductivity in heavy-fermion U(Pt,Pd)3 and its interplay with magnetism

    Full text link
    The effect of Pd doping on the superconducting phase diagram of the unconventional superconductor UPt3 has been measured by (magneto)resistance, specific heat, thermal expansion and magnetostriction. Experiments on single- and polycrystalline U(Pt1-xPdx)3 for x<= 0.006 show that the superconducting transition temperatures of the A phase, Tc+, and of the B phase, Tc-, both decrease, while the splitting DTc increases at a rate of 0.30(2)K/at.%Pd. We find that DTc(x) correlates with an increase of the weak magnetic moment m(x) upon Pd doping. This provides further evidence for Ginzburg-Landau scenarios with magnetism as the symmetry breaking field, i.e. the 2D E representation and the 1D odd parity model. Only for small splittings DTc is proportional to m^2(Tc+) (DTc<= 0.05 K) as predicted. The results at larger splittings call for Ginzburg-Landau expansions beyond 4th order. The tetracritical point in the B-T plane persists till at least x= 0.002 for B perpendicular to c, while it is rapidly suppressed for B||c. Upon alloying the A and B phases gain stability at the expense of the C phase.Comment: 25 pages text (PS), 8 pages with 14 figures (PS), submitted to Phys.Rev.
    corecore