821 research outputs found

    Stability and Dynamics of Crystals and Glasses of Motorized Particles

    Full text link
    Many of the large structures of the cell, such as the cytoskeleton, are assembled and maintained far from equilibrium. We study the stabilities of various structures for a simple model of such a far-from-equilibrium organized assembly in which spherical particles move under the influence of attached motors. From the variational solutions of the manybody master equation for Brownian motion with motorized kicking we obtain a closed equation for the order parameter of localization. Thus we obtain the transition criterion for localization and stability limits for the crystalline phase and frozen amorphous structures of motorized particles. The theory also allows an estimate of nonequilibrium effective temperatures characterizing the response and fluctuations of motorized crystals and glasses.Comment: 5 pages, 3 figure

    Metastable states of hydrogen: their geometric phases and flux densities

    Full text link
    We discuss the geometric phases and flux densities for the metastable states of hydrogen with principal quantum number n=2 being subjected to adiabatically varying external electric and magnetic fields. Convenient representations of the flux densities as complex integrals are derived. Both, parity conserving (PC) and parity violating (PV) flux densities and phases are identified. General expressions for the flux densities following from rotational invariance are derived. Specific cases of external fields are discussed. In a pure magnetic field the phases are given by the geometry of the path in magnetic field space. But for electric fields in presence of a constant magnetic field and for electric plus magnetic fields the geometric phases carry information on the atomic parameters, in particular, on the PV atomic interaction. We show that for our metastable states also the decay rates can be influenced by the geometric phases and we give a concrete example for this effect. Finally we emphasise that the general relations derived here for geometric phases and flux densities are also valid for other atomic systems having stable or metastable states, for instance, for He with n=2. Thus, a measurement of geometric phases may give important experimental information on the mass matrix and the electric and magnetic dipole matrices for such systems. This could be used as a check of corresponding theoretical calculations of wave functions and matrix elements.Comment: 29 pages, 12 figure

    Method of filling databases of electronic components based on the uniform tables of document parameters

    Get PDF
    Рассматриваются вопросы разработки методики автоматизированного наполнения баз данных электрорадиоизделий, основанной на объединении таблиц параметров нормативного документа. Показаны её основные этапы и особенности. Предложено оформлять связи между параметрами и правило формирования наименования элементов в текстовом файле-шаблоне. Приводится предварительная оценка времени оформления файлов-шаблонов различных нормативных документов. Показано применениеметодики для автоматического наполнения технологических справочников.The problems of the development of the methodology for the automated filling of databases of electronic products based on the integration of the parameters tables of the normative document are considered. Its main stages and features are shown. It is proposed to formalize the relationship between the parameters and the rule for the formation of the names of elements in a text file-template. A preliminary estimate of the time for creating template files for various normative documents is given. The application of the technique for automatic filling oftechnological databases is shown

    Phase separation of a repulsive two-component Fermi gas at the two- to three-dimensional crossover

    Full text link
    We present a theoretical analysis of phase separations between two repulsively interacting components in an ultracold fermionic gas, occurring at the dimensional crossover in a harmonic trap with varying aspect ratios. A tailored kinetic energy functional is derived and combined with a density-potential functional approach to develop a framework that is benchmarked with the orbital-based method. We investigate the changes in the density profile of the phase-separated gas under different interaction strengths and geometries. The analysis reveals the existence of small, partially polarized domains in certain parameter regimes, which is similar to the purely two-dimensional limit. However, the density profile is further enriched by a shell structure found in anisotropic traps. We also track the transitions that can be driven by either a change in interaction strength or trap geometry. The developed framework is noted to have applications for other systems with repulsive interactions that combine continuous and discrete degrees of freedom.Comment: 14 pages, 4 figure

    Longitudinal Atomic Beam Spin Echo Experiments: A possible way to study Parity Violation in Hydrogen

    Full text link
    We discuss the propagation of hydrogen atoms in static electric and magnetic fields in a longitudinal atomic beam spin echo (lABSE) apparatus. Depending on the choice of the external fields the atoms may acquire both dynamical and geometrical quantum mechanical phases. As an example of the former, we show first in-beam spin rotation measurements on atomic hydrogen, which are in excellent agreement with theory. Additional calculations of the behaviour of the metastable 2S states of hydrogen reveal that the geometrical phases may exhibit the signature of parity-(P-)violation. This invites for possible future lABSE experiments, focusing on P-violating geometrical phases in the lightest of all atoms.Comment: 6 pages, 4 figure

    A preliminary census of the macrofungi of Mt Wellington, Tasmania- the sequestrate species

    Get PDF
    This is the fourth and final contribution in a series of papers providing a preliminary documentation of the macrofungi of Mt Wellington, Tasmania. The earlier papers dealt with the gilled Basidiomycota, the non-gilled Basidiomycota and the Ascomycota, respectively, excluding the sequestrate species. The present paper completes the series by dealing with the sequestrate species, of which seven Ascomycota, 76 Basidiomycota, three Glomeromycota and one Zygomycota were found. Seven new genera and 25 new species to be formally described elsewhere, are recorded

    Phase Transitions of Repulsive Two-Component Fermi Gases in Two Dimensions

    Full text link
    We predict the phase separations of two-dimensional Fermi gases with repulsive contact-type interactions between two spin components. Using density-potential functional theory with systematic semiclassical approximations, we address the long-standing problem of itinerant ferromagnetism in realistic settings. We reveal a universal transition from the paramagnetic state at small repulsive interactions towards ferromagnetic density profiles at large interaction strengths, with intricate particle-number dependent phases in between. Building on quantum Monte Carlo results for uniform systems, we benchmark our simulations against Hartree-Fock calculations for a small number of trapped fermions. We thereby demonstrate that our employed corrections to the mean-field interaction energy and especially to the Thomas-Fermi kinetic energy functional are necessary for reliably predicting properties of trapped mesoscopic Fermi gases. The density patterns of the ground state survive at low finite temperatures and confirm the Stoner-type polarization behavior across a universal interaction parameter, albeit with substantial quantitative differences that originate in the trapping potential and the quantum-corrected kinetic energy. We also uncover a zoo of metastable configurations that are energetically comparable to the ground-state density profiles and are thus likely to be observed in experiments. We argue that our density-functional approach can be easily applied to interacting multi-component Fermi gases in general.Comment: 23 pages, 8 figure

    Time Resolved Correlation measurements of temporally heterogeneous dynamics

    Full text link
    Time Resolved Correlation (TRC) is a recently introduced light scattering technique that allows to detect and quantify dynamic heterogeneities. The technique is based on the analysis of the temporal evolution of the speckle pattern generated by the light scattered by a sample, which is quantified by c_I(t,τ)c\_I(t,\tau), the degree of correlation between speckle images recorded at time tt and t+τt+\tau. Heterogeneous dynamics results in significant fluctuations of c_I(t,τ)c\_I(t,\tau) with time tt. We describe how to optimize TRC measurements and how to detect and avoid possible artifacts. The statistical properties of the fluctuations of c_Ic\_I are analyzed by studying their variance, probability distribution function, and time autocorrelation function. We show that these quantities are affected by a noise contribution due to the finite number NN of detected speckles. We propose and demonstrate a method to correct for the noise contribution, based on a NN\to \infty extrapolation scheme. Examples from both homogeneous and heterogeneous dynamics are provided. Connections with recent numerical and analytical works on heterogeneous glassy dynamics are briefly discussed.Comment: 19 pages, 15 figures. Submitted to PR

    Modeling mycorrhizal fungi dispersal by the mycophagous swamp wallaby (Wallabia bicolor)

    Get PDF
    Despite the importance of mammal-fungal interactions, tools to estimate the mammal-assisted dispersal distances of fungi are lacking. Many mammals actively consume fungal fruiting bodies, the spores of which remain viable after passage through their digestive tract. Many of these fungi form symbiotic relationships with trees and provide an array of other key ecosystem functions. We present a flexible, general model to predict the distance a mycophagous mammal would disperse fungal spores. We modelled the probability of spore dispersal by combining animal movement data from GPS-telemetry with data on spore gut-retention time. We test this model using an exemplar generalist mycophagist, the swamp wallaby (Wallabia bicolor). We show that swamp wallabies disperse fungal spores hundreds of metres—and occasionally up to 1265 m—from the point of consumption, distances that are ecologically significant for many mycorrhizal fungi. In addition to highlighting the ecological importance of swamp wallabies as dispersers of mycorrhizal fungi in eastern Australia, our simple modelling approach provides a novel and effective way of empirically describing spore dispersal by a mycophagous animal. This approach is applicable to the study of other animal-fungi interactions in other ecosystems.Funding provided by: Hermon Slade FoundationCrossref Funder Registry ID: http://dx.doi.org/10.13039/501100001109Award Number: HSF08-6Funding provided by: Australian Research CouncilCrossref Funder Registry ID: http://dx.doi.org/10.13039/501100000923Award Number: DP0557022Methods are described in the published article

    Experimental Verification of Electromagnetic Simulations of a HIFI Mixer Sub-Assembly

    Get PDF
    Phase II of the study "Far-Infrared Optics Design & Verification", commissioned by the European Space Agency (ESA), we investigate the ability of several commercial software packages (GRASP, CODEV, GLAD and ASAP) to predict the performance of a representative example of a submillimeter-wave optical system. In this paper, we use the software packages to predict the behaviour of a Mixer Sub-Assembly (MSA) of HIFI, and we compare the simulations with near-field measurements at 480 GHz. In order to be able to distinguish between the predictions of the packages, we move the corrugated horn of the MSA through its nominal focus position. A unique feature of the experimental arrangement is that the measured position of every field point is known absolutely to within fractions of a wavelength. In this paper we present the results of this through-focus experiment, which give a good first-order indication of the agreement between measured and simulated behaviour of a typical submillimeter-wave optical system
    corecore