23 research outputs found

    Higher Tetanus Toxoid Immunity 2 Years After PsA-TT Introduction in Mali.

    Get PDF
    BACKGROUND: In 2010, mass vaccination with a then-new meningococcal A polysaccharide-tetanus toxoid protein conjugate vaccine (PsA-TT, or MenAfriVac) was undertaken in 1- to 29-year-olds in Bamako, Mali. Whether vaccination with PsA-TT effectively boosts tetanus immunity in a population with heterogeneous baseline tetanus immunity is not known. We assessed the impact of PsA-TT on tetanus toxoid (TT) immunity by quantifying age- and sex-specific immunity prior to and 2 years after introduction. METHODS: Using a household-based, age-stratified design, we randomly selected participants for a prevaccination serological survey in 2010 and a postvaccination survey in 2012. TT immunoglobulin G (IgG) antibodies were quantified and geometric mean concentrations (GMCs) pre- and postvaccination among all age groups targeted for vaccination were compared. The probability of TT IgG levels ≥0.1 IU/mL (indicating short-term protection) and ≥1.0 IU/mL (indicating long-term protection) by age and sex was determined using logistic regression models. RESULTS: Analysis of 793 prevaccination and 800 postvaccination sera indicated that while GMCs were low pre-PsA-TT, significantly higher GMCs in all age-sex strata were observed 2 years after PsA-TT introduction. The percentage with short-term immunity increased from 57.1% to 88.4% (31.3-point increase; 95% confidence interval [CI], 26.6-36.0;, P < .0001) and with long-term immunity increased from 20.0% to 58.5% (38.5-point increase; 95% CI, 33.7-43.3; P < .0001) pre- and postvaccination. CONCLUSIONS: Significantly higher TT immunity was observed among vaccine-targeted age groups up to 2 years after Mali's PsA-TT mass vaccination campaign. Our results, combined with evidence from clinical trials, strongly suggest that conjugate vaccines containing TT such as PsA-TT should be considered bivalent vaccines because of their ability to boost tetanus immunity

    Evaluation and optimization of membrane feeding compared to direct feeding as an assay for infectivity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria parasite infectivity to mosquitoes has been measured in a variety of ways and setting, includind direct feeds of and/or membrane feeding blood collected from randomly selected or gametocytemic volunteers. <it>Anopheles gambiae s.l </it>is the main vector responsible of <it>Plasmodium falciparum </it>transmission in Bancoumana and represents about 90% of the laboratory findings, whereas <it>Plasmodium malariae </it>and <it>Plasmodium ovale </it>together represent only 10%.</p> <p>Materials and methods</p> <p>Between August 1996 and December 1998, direct and membrane feeding methods were compared for the infectivity of children and adolescent gametocyte carriers to anopheline mosquitoes in the village of Bancoumana in Mali. Gametocyte carriers were recruited twice a month through a screening of members of 30 families using Giemsa-stained thick blood smears. F1 generation mosquitoes issued from individual female wild mosquitoes from Bancoumana were reared in a controlled insectary conditions and fed 5% sugar solution in the laboratory in Bamako, until the feeding day when they are starved 12 hours before the feeding experiment. These F1 generation mosquitoes were divided in two groups, one group fed directly on gametocyte carriers and the other fed using membrane feeding method.</p> <p>Results</p> <p>Results from 372 <it>Plasmodium falciparum </it>gametocyte carriers showed that children aged 4–9 years were more infectious than adolescents (p = 0.039), especially during the rainy season. Data from 35 carriers showed that mosquitoes which were used for direct feeding were about 1.5 times more likely to feed (p < 0.001) and two times more likely to become infected, if they fed (p < 0.001), than were those which were used for membrane feeding. Overall, infectivity was about three-times higher for direct feeding than for membrane feeding (p < 0.001).</p> <p>Conclusion</p> <p>Although intensity of infectivity was lower for membrane feeding, it could be a surrogate to direct feeding for evaluating transmission-blocking activity of candidate malaria vaccines. An optimization of the method for future trials would involve using about three-times more mosquitoes than would be used for direct feeding.</p

    Prevalence, Clinical Severity, and Seasonality of Adenovirus 40/41, Astrovirus, Sapovirus, and Rotavirus Among Young Children With Moderate-to-Severe Diarrhea: Results From the Vaccine Impact on Diarrhea in Africa (VIDA) Study.

    Get PDF
    BACKGROUND: While rotavirus causes severe diarrheal disease in children aged <5 years, data on other viral causes in sub-Saharan Africa are limited. METHODS: In the Vaccine Impact on Diarrhea in Africa study (2015-2018), we analyzed stool from children aged 0-59 months with moderate-to-severe diarrhea (MSD) and without diarrhea (controls) in Kenya, Mali, and The Gambia using quantitative polymerase chain reaction. We derived the attributable fraction (AFe) based on the association between MSD and the pathogen, accounting for other pathogens, site, and age. A pathogen was attributable if the AFe was ≥0.5.The severity of attributable MSD was defined by a modified Vesikari score (mVS). Monthly cases were plotted against temperature and rainfall to assess seasonality. RESULTS: Among 4840 MSD cases, proportions attributed to rotavirus, adenovirus 40/41, astrovirus, and sapovirus were 12.6%, 2.7%, 2.9%, and 1.9%, respectively. Attributable rotavirus, adenovirus 40/41, and astrovirus MSD cases occurred at all sites, with mVS of 11, 10, and 7, respectively. MSD cases attributable to sapovirus occurred in Kenya, with mVS of 9. Astrovirus and adenovirus 40/41 peaked during the rainy season in The Gambia, while rotavirus peaked during the dry season in Mali and The Gambia. CONCLUSIONS: In sub-Saharan Africa, rotavirus was the most common cause of MSD; adenovirus 40/41, astrovirus, and sapovirus contributed to a lesser extent among children aged <5 years. Rotavirus- and adenovirus 40/41-attributable MSD were most severe. Seasonality varied by pathogen and location. Efforts to increase the coverage of rotavirus vaccines and to improve prevention and treatment for childhood diarrhea should continue

    Epidemiology of Enteroaggregative, Enteropathogenic, and Shiga Toxin-Producing Escherichia coli Among Children Aged <5 Years in 3 Countries in Africa, 2015-2018: Vaccine Impact on Diarrhea in Africa (VIDA) Study.

    Get PDF
    BACKGROUND: To address knowledge gaps regarding diarrheagenic Escherichia coli (DEC) in Africa, we assessed the clinical and epidemiological features of enteroaggregative E. coli (EAEC), enteropathogenic E. coli (EPEC), and Shiga toxin-producing E. coli (STEC) positive children with moderate-to-severe diarrhea (MSD) in Mali, The Gambia, and Kenya. METHODS: Between May 2015 and July 2018, children aged 0-59 months with medically attended MSD and matched controls without diarrhea were enrolled. Stools were tested conventionally using culture and multiplex polymerase chain reaction (PCR), and by quantitative PCR (qPCR). We assessed DEC detection by site, age, clinical characteristics, and enteric coinfection. RESULTS: Among 4840 children with MSD and 6213 matched controls enrolled, 4836 cases and 1 control per case were tested using qPCR. Of the DEC detected with TAC, 61.1% were EAEC, 25.3% atypical EPEC (aEPEC), 22.4% typical EPEC (tEPEC), and 7.2% STEC. Detection was higher in controls than in MSD cases for EAEC (63.9% vs 58.3%, P < .01), aEPEC (27.3% vs 23.3%, P < .01), and STEC (9.3% vs 5.1%, P < .01). EAEC and tEPEC were more frequent in children aged <23 months, aEPEC was similar across age strata, and STEC increased with age. No association between nutritional status at follow-up and DEC pathotypes was found. DEC coinfection with Shigella/enteroinvasive E. coli was more common among cases (P < .01). CONCLUSIONS: No significant association was detected between EAEC, tEPEC, aEPEC, or STEC and MSD using either conventional assay or TAC. Genomic analysis may provide a better definition of the virulence factors associated with diarrheal disease

    Histo-Blood Group Antigen Null Phenotypes Associated With a Decreased Risk of Clinical Rotavirus Vaccine Failure Among Children &amp;lt;2 Years of Age Participating in the Vaccine Impact on Diarrhea in Africa (VIDA) Study in Kenya, Mali, and the Gambia

    Get PDF
    Background: Previously studied risk factors for rotavirus vaccine failure have not fully explained reduced rotavirus vaccine effectiveness in low-income settings. We assessed the relationship between histo-blood group antigen (HBGA) phenotypes and clinical rotavirus vaccine failure among children 4. Conclusions: Our study demonstrated a significant relationship between null HBGA phenotypes and decreased rotavirus vaccine failure in a population with P[8] as the most common infecting genotype. Further studies are needed in populations with a large burden of P[6] rotavirus diarrhea to understand the role of host genetics in reduced rotavirus vaccine effectiveness

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    "Los dos perezosos" (ATU 1950) de Juan Ruiz y la tradiciĂłn oral diula de Costa de Marfil: traducciĂłn, transmisiĂłn, tradiciĂłn

    No full text
    The translation / transmission / tradition of folkloric discourse follows very different rules, marked by openness and dynamism, in relation to the specific rules of written translation. This article looks at the story of “The Two Lazy Suitors” of the "Libro de buen amor" both in diachronic and synchronicperspectives, from the Middle Ages to the Internet age, and in its diffusion across multiple cultures. The African versions of the folktale are of importance, as they are much more extensive and complex than the European ones.La traducción / transmisión / tradición de discursos folclóricos sigue unas reglas muy diferentes, marcadas por la apertura y el dinamismo, de las reglas concretas y cerradas a las que se ajusta la traducción escrita. Este artículo analiza el cuento de "Los dos perezosos" del "Libro de buen amor" en el marco diacrónico y sincrónico, desde la Edad Media a la era de Internet, y en su difusión pluricultural. Especial relieve tienen las versiones africanas, mucho más extensas y complejas que las europea

    Novel Approaches for Getting the Solution of the Fractional Black–Scholes Equation Described by Mittag-Leffler Fractional Derivative

    No full text
    The value of an option plays an important role in finance. In this paper, we use the Black–Scholes equation, which is described by the nonsingular fractional-order derivative, to determine the value of an option. We propose both a numerical scheme and an analytical solution. Recent studies in fractional calculus have included new fractional derivatives with exponential kernels and Mittag-Leffler kernels. These derivatives have been found to be applicable in many real-world problems. As fractional derivatives without nonsingular kernels, we use a Caputo–Fabrizio fractional derivative and a Mittag-Leffler fractional derivative. Furthermore, we use the Adams–Bashforth numerical scheme and fractional integration to obtain the numerical scheme and the analytical solution, and we provide graphical representations to illustrate these methods. The graphical representations prove that the Adams–Bashforth approach is helpful in getting the approximate solution for the fractional Black–Scholes equation. Finally, we investigate the volatility of the proposed model and discuss the use of the model in finance. We mainly notice in our results that the fractional-order derivative plays a regulator role in the diffusion process of the Black–Scholes equation
    corecore