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Background.  While rotavirus causes severe diarrheal disease in children aged <5 years, data on other viral causes in sub- 
Saharan Africa are limited.

Methods. In the Vaccine Impact on Diarrhea in Africa study (2015–2018), we analyzed stool from children aged 0–59 months 
with moderate-to-severe diarrhea (MSD) and without diarrhea (controls) in Kenya, Mali, and The Gambia using quantitative 
polymerase chain reaction. We derived the attributable fraction (AFe) based on the association between MSD and the pathogen, 
accounting for other pathogens, site, and age. A pathogen was attributable if the AFe was ≥0.5.

The severity of attributable MSD was defined by a modified Vesikari score (mVS). Monthly cases were plotted against 
temperature and rainfall to assess seasonality.

Results. Among 4840 MSD cases, proportions attributed to rotavirus, adenovirus 40/41, astrovirus, and sapovirus were 12.6%, 
2.7%, 2.9%, and 1.9%, respectively. Attributable rotavirus, adenovirus 40/41, and astrovirus MSD cases occurred at all sites, with 
mVS of 11, 10, and 7, respectively. MSD cases attributable to sapovirus occurred in Kenya, with mVS of 9. Astrovirus and 
adenovirus 40/41 peaked during the rainy season in The Gambia, while rotavirus peaked during the dry season in Mali and The 
Gambia.

Conclusions. In sub-Saharan Africa, rotavirus was the most common cause of MSD; adenovirus 40/41, astrovirus, and 
sapovirus contributed to a lesser extent among children aged <5 years. Rotavirus- and adenovirus 40/41-attributable MSD were 
most severe. Seasonality varied by pathogen and location. Efforts to increase the coverage of rotavirus vaccines and to improve 
prevention and treatment for childhood diarrhea should continue.
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Globally, diarrheal disease continues to negatively impact chil
dren aged <5 years, causing an estimated 500 000 deaths annu
ally [1, 2]. Low-income countries are disproportionately 
affected, with 90% of diarrheal deaths occurring in 
sub-Saharan Africa and south Asia [3]. Prior to widespread 
vaccination, rotavirus was the leading cause of moderate-to-se
vere diarrhea (MSD) in children aged <5 years [4–7]. Other vi
ruses associated with childhood diarrhea include norovirus, 
enteric adenovirus (in particular, serotypes 40 and 41), sapovi
rus, and astrovirus [8–11]. Previous research suggests that the 
prevalence of viruses as etiologic agents of pediatric diarrhea 
varies by geography, the severity of the diarrheal disease 
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syndrome under study, and the level of sociodemographic de
velopment [12, 13].

Following successful clinical trials of rotavirus vaccines in 
low-resource countries and a World Health Organization 
(WHO) recommendation for routine use in all countries, rota
virus vaccines were introduced into national immunization 
programs in more than 110 countries globally between 2008 
and 2016 [14–16]. An estimated 40% global reduction in rota
virus prevalence ensued and was associated with a decrease in 
rotavirus-associated diarrhea, hospitalizations, and deaths in 
children aged <5 years [17]. Despite these declines, children 
in Africa continue to die from diarrhea [18]. It is therefore crit
ical to maintain an updated knowledge base of the etiologic 
agents associated with the most clinically relevant illnesses.

In addition to the positive health impact of rotavirus vaccine 
introduction, we anticipate a shift in predominant etiologies of 
MSD. Evidence from middle- and high-income countries post- 
rotavirus vaccine introduction indicates that viral agents, in 
particular, the caliciviruses (norovirus and sapovirus), have as
sumed the lead as the major causes of diarrheal hospitalizations 
and outpatient visits in children [19–23]. However, rigorous 
studies following rotavirus vaccine introduction are sparse in 
sub-Saharan Africa, where the need for relevant and impactful 
interventions is great. Such studies should test for an array of 
important pathogens using sensitive molecular microbiological 
diagnostics and study designs that account for asymptomatic 
infections to enable estimates of the proportion of pathogen de
tections that are attributable to the diarrheal syndromes associ
ated with high morbidity and mortality [8, 24, 25].

The Global Enteric Multicenter Study (GEMS and 
GEMS-1A, 2007–2012) was a population-based, case-control 
study of the incidence, etiology, and adverse clinical conse
quence of medically attended diarrhea among children aged 
0–59 months across 7 sites in Africa and Asia [4, 12]. 
Conducted prior to rotavirus vaccine introduction at any site, 
GEMS found that rotavirus, Cryptosporidium, Shigella, and 
heat-stable toxin-producing enterotoxigenic Escherichia coli 
had the highest attributable incidence among infants aged 0–11 
months across a range of severity designated MSD [4] and less se
vere diarrhea (LSD) [8,12]. Enteric adenovirus 40/41 (using im
munoassay) had the fifth highest attributable incidence in 
infants and the eighth highest in children aged 12–23 months 
[4]. Reanalysis of the GEMS data using the quantitative polymer
ase chain reaction (qPCR) assay resulted in a 5-fold increase in the 
attributable incidence of adenovirus 40/41, placing it as the sec
ond and third most common pathogen in these respective age 
groups [26]. Other viruses were less common.

The Vaccine Impact on Diarrhea in Africa (VIDA) study 
(2015–2018), a similarly designed follow-on to GEMS, reesti
mated the pathogen-specific burden associated with MSD after 
rotavirus vaccine introduction using qPCR methods in 3 of the 
GEMS African sites: The Gambia, Kenya, and Mali. The 

objectives of the research presented here were to describe the 
prevalence of episodes attributable to adenovirus 40/41, astrovi
rus, sapovirus, and rotavirus and the clinical characteristics of 
these cases; to examine the severity of attributable cases of ade
novirus 40/41, astrovirus, and sapovirus compared with rotavi
rus; and to describe the seasonality of these viruses. The 
compelling need to better define the global burden of norovirus 
in low-income settings [27] is the subject of a separate analysis 
[28].

METHODS

Study Setting and Participants

VIDA is a prospective case-control study designed to assess eti
ology, incidence, and adverse clinical consequences of MSD 
among young children at 3 GEMS sites in sub-Saharan Africa 
(Kenya, Mali, and The Gambia). Participants were recruited 
at each site from a censused population using an ongoing de
mographic surveillance system (DSS). Cases were enrolled 
from sentinel health centers (SHCs) where DSS children sought 
care for diarrhea. MSD cases were defined as children aged 
0–59 months who passed at least 3 abnormally loose stools 
within the past 24 hours, whose diarrhea started within the 
last 7 days, and who met at least 1 of the following criteria 
for MSD: sunken eyes, loss of skin turgor, dysentery, intrave
nous (IV) rehydration required, or hospitalization.

Enrollment and Data Collection

All children from the DSS with diarrhea who presented to a SHC 
were screened for MSD according to published methods [29]. In 
brief, the sites aimed to enroll the first 8–9 MSD cases in each of 
3 age strata (0–11 months, 12–23 months, 24–59 months) per 
fortnight for 36 consecutive months. For each case, 1–3 diarrhea- 
free control children were enrolled within 14 days of the case 
enrollment. Eligible controls were randomly selected from the 
DSS database, matched to the index case by age, sex, and resi
dence [30].

At enrollment, the primary caregiver of each case and con
trol underwent a standardized interview that comprised ques
tions related to demographic, clinical, and epidemiologic 
features. A brief physical examination was performed that in
cluded anthropometric measurements. Caregivers were trained 
to use a simple memory aid card to record the occurrence of di
arrhea each day for the next 14 days. Approximately 60 days af
ter enrollment (targeted range, 50–90), cases and controls were 
visited at their homes to determine vital status, anthropometric 
measures, and interim clinical events and to review and collect 
the memory aid card.

For analyses of potential viral pathogens, a fresh, whole stool 
sample was obtained from each case within 12 hours of regis
tration at a SHC and from each control at home; collection, 
transport, and processing were performed according to 
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standardized methods [29]. For conventional analyses, samples 
were aliquoted into sterile tubes and stored at −80°C. 
Reverse-transcriptase PCR (RT-PCR) assays were used to ana
lyze for astrovirus and sapovirus, and the ProSpecT Adenovirus 
Microplate (Oxoid, Basingstoke, UK) and the ProSpecT 
Rotavirus (Oxoid, Basingstoke, UK) commercial immunoassay 
kits were used to analyze for adenovirus and rotavirus, respec
tively. Samples positive for adenovirus common antigen were 
further tested using the Premier Adenoclone kit (Meridian 
Bioscience, Cincinnati, OH) to identify serotype 40/41.

Stool samples from all cases and their first matched control 
were also analyzed for viral pathogens using qPCR and 
TaqMan Array Card (TAC; Life Technologies, VA), according 
to Liu et al [26]. Standard curves were generated to convert the 
cycle threshold (Ct) to target copy numbers [31]. The quantity 
of pathogen was defined as log10-copy numbers per gram of 
stool. Pathogen positivity was defined as a Ct value <35, a stan
dard cutoff [32]. Laboratory methods for viral pathogens are 
detailed elsewhere [29, 33, 34].

Monthly estimates of temperature and rainfall were obtained 
for each site. In The Gambia and Kenya, data came from gov
ernment sources (The Gambia annual climate report and the 
Kenya Meteorological Department) with monitoring stations 
at major airports. Data for Mali came from Climate-Data.org
[35], which provides monthly modeled estimates based on 
data from 1982–2012.

Statistical Methods

Derivation of Attributable Cases
The episode-specific attributable fraction (AFe) was estimated 
for each child and pathogen using a pathogen-specific condi
tional logistic regression model [30] based on the TAC qPCR 
results that include the pathogen, an interaction between path
ogen and site and between pathogen and age, as well as all other 
pathogens that occurred in at least 2% of cases and controls. 
Using the adjusted model coefficients, we estimated the 
episode-specific odds of an individual being a case (odds ratio 
[Or]) for each pathogen detected in their stool sample. An in
dividual’s odds were converted to an AFe based on 1 – 1/ORe. 
An MSD episode was considered attributable to an individual 
pathogen if the pathogen-specific AFe was ≥0.5 [36, 37].

Attributable Cases and Clinical Severity
We reported positivity for adenovirus 40/41, astrovirus, sapovi
rus, and rotavirus among cases and controls as defined by con
ventional methods (immunoassay and RT-RCR), qPCR 
positivity (Ct <35), and attributable MSD (AFe >0.5) using 
qPCR. We further reported the MSD cases that were attributed 
to 1 of these 4 viral pathogens by site, age, and sex. To compare 
the severity of clinical presentation of adenovirus 40/41-, 
astrovirus-, and sapovirus-attributed MSD with 
rotavirus-attributed MSD, we used a 20-point modified 

Vesikari score (mVS) [37], which contained all components 
of the original Vesikari score with minor modifications 
[7, 38] (Supplementary Table 1). Subgroup analyses by age 
and site were performed. The mVS made it possible to collect 
all data at enrollment except for duration of diarrhea, which 
was collected using the memory aid card. We categorized dehy
dration according to the WHO standard of none, some, and se
vere and the corresponding treatment guidelines [39]; a child 
who received IV fluids was considered more severe and count
ed as hospitalized, even if the child was not hospitalized [37]. 
The χ2 test (or the Fisher exact test) was used to compare cat
egorical outcomes, while a Wilcoxon rank sum test was used 
for quantitative variables. Statistical significance was defined 
as a P value <.05. To ensure independent groups for statistical 
analyses, MSD episodes attributable to more than 1 of adenovi
rus 40/41, astrovirus, sapovirus, or rotavirus were excluded; if 
an episode was attributable to 1 of these viruses plus another 
putative pathogen, it was included.

Seasonality
To assess seasonality of adenovirus 40/41, astrovirus, sapovirus, 
and rotavirus, we calculated the total weighted number of 
pathogen-positive (Ct <35) MSD cases for each calendar month 
and summed over study years. A site- and age-specific weight of 
children who presented with MSD at SHCs divided by the num
ber of cases enrolled was used to adjust for the cap on number of 
enrolled children. These monthly estimates were plotted along
side monthly maximum temperature (averaged over study 
years) and months when total rainfall (averaged over study 
years) exceeded mean rainfall for the study period.

All analyses were performed using R version 4.1.0.

RESULTS

In VIDA, 4840 cases and 6213 controls were enrolled. All stool 
samples were analyzed using conventional methods, and 
4836 cases and their first matched control were analyzed using 
qPCR. Less than 1% of tested samples did not produce a defin
itive result (Table 1).

Prevalence

Compared with the “conventional” RT-PCR assay (sapovirus, 
astrovirus) or enzyme immunoassay (rotavirus, adenovirus 
40/41), qPCR had higher positivity in both cases and controls 
for all 4 viruses (Table 1). The frequency of qPCR positivity 
among cases was 12.4%, 6.3%, 13.9%, and 13.4% for adenovirus 
40/41, astrovirus, sapovirus, and rotavirus, respectively. When 
the prevalence of each virus in controls was taken into account 
by calculating the AFe, rotavirus accounted for 12.6% of MSD 
cases, while adenovirus 40/41, astrovirus, and sapovirus ac
counted for 2.7%, 2.9%, and 1.9% of MSD cases, respectively. 
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Among the 910 total infections attributable to any of the 4 vi
ruses, 20 (2.1%) were coinfections.

Episodes attributable to adenovirus 40/41, astrovirus, and 
rotavirus occurred in all age groups and at all sites. Only at 
the Kenya site were MSD cases attributable to sapovirus, 
with cases occurring across all age groups (Table 2). The 
majority of adenovirus 40/41-attributable MSD cases oc
curred in infants (0–11 months, 56.7%), while the majority 
of attributable astrovirus MSD cases occurred in toddlers 
(12–23 months, 59.6%). Attributable rotavirus MSD was 
notably present in both the infant and toddler groups 
(0–11 months, 42.5% and 12–23 months, 38.6%). Similar 
distributions were seen in males and females.

Clinical Severity

Based on the median (Q1–Q3) mVS, the severity of MSD 
caused by rotavirus was greatest (median mVS, 11 [8–12]), 
followed by adenovirus 40/41 (median mVS, 10 [7–11]), sapo
virus (median mVS, 9 [7–11]), and astrovirus (median mVS, 7 
[6–10]; Table 3). All mVS comparisons to rotavirus were stat
istically significant. When analyses were restricted to the youn
gest age group (0–11 months), the pattern of severity followed 
the same order: rotavirus mVS, 11 [8–12]; adenovirus mVS, 
10.5 [7–12]; sapovirus mVS, 9 [8.5, 10]; and astrovirus mVS, 
7 [6–10] (Supplementary Table 2).

The maximum number of stools per day was similar across 
the viruses. The proportion of children with vomiting was 
highest in cases attributed to rotavirus. Vomiting was signifi
cantly more common among cases attributed to rotavirus com
pared with those attributed to the other viruses. However, when 
compared with rotavirus, the maximum number of vomiting 
episodes in a day was comparable for adenovirus 40/41 (P = 
.127) and sapovirus (P = .074) but significantly lower for astro
virus (P < .001).

Children with sapovirus-attributable MSD were only from 
the Kenya site and were the most likely to be classified in the 
severe dehydration category. The percentage of cases classified 
as severe was no longer statistically higher than rotavirus when 
the dehydration category comparison was restricted to cases 
from the Kenya site. Regardless of dehydration category, 
100% of sapovirus and rotavirus cases in Kenya received oral 
rehydration, IV fluids, and/or hospitalization (Table 3).

Seasonality

Figure 1A–D summarizes the seasonality of adenovirus 40/41, 
astrovirus, sapovirus, and rotavirus by site. In The Gambia, 
we observed an annual peak of adenovirus 40/41-positive 
MSD cases and a small peak of astrovirus MSD cases peak in 
August. Both peaks occurred during the rainy season when 
temperatures were cooler. There was also a smaller astrovirus 

Table 1. Prevalence of Viral Pathogen by Diagnostic Method for Cases and Controls and Percent of Cases Attributed to Each Virus for Cases Only During 
the Vaccine Impact on Diarrhea in Africa Study: 2015–2018

Adenovirus 40/41 Astrovirus Sapovirus Rotavirus

Diagnostic Method Cases Controls Cases Controls Cases Controls Cases Controls

RT-PCR/Immunoassay a 4836 6209 4838 6209 4838 6209 4839 6213

Positive, n (%)b 110 (2.3) 25 (0.4) 108 (2.2) 70 (1.1) 150 (3.1) 205 (3.3) 476 (9.8) 49 (0.8)

qPCRa 4708 4719 4803 4771 4806 4778 4806 4775

Positive (cycle threshold <35), nb (%) 584 (12.4) 541 (11.5) 304 (6.3) 211 (4.4) 668 (13.9) 531 (11.1) 644 (13.4) 208 (4.4)

Attributable fraction (0.5), n (%) 127 (2.7) … 141 (2.9) … 90 (1.9) … 609 (12.6) …

Abbreviations: qPCR, quantitative polymerase chain reaction using the TaqMan Array Card; RT-PCR, reverse-transcription polymerase chain reaction.  
aTested with definitive result.  
bDenominator is the number tested using RT-PCR/Enzyme immunoassay with definitive result.

Table 2. Distribution of Attributable Moderate-to-Severe Diarrhea Cases by Study Site, Age Group, and Sex in the Vaccine Impact on Diarrhea in Africa Study

Subcategory
Adenovirus 40/41 Astrovirus Sapovirus Rotavirus

n = 127 n = 141 n = 90 n = 609

Site The Gambia 48 (37.8%) 50 (35.5%) 0 233 (38.3%)

Mali 29 (22.8%) 48 (34.0%) 0 189 (31.0%)

Kenya 50 (39.4%) 43 (30.5%) 90 (100.0%) 187 (30.7%)

Age, mo 0–11 72 (56.7%) 36 (25.5%) 24 (26.7%) 259 (42.5%)

12–23 43 (33.9%) 84 (59.6%) 38 (42.2%) 235 (38.6%)

24–59 12 (9.4%) 21 (14.9%) 28 (31.1%) 115 (18.9%)

Median (Q1–Q3) 11 (8–15.5) 15 (11–20) 16.5 (11–25.75) 13 (9–20)

Sex Male 64 (50.4%) 75 (53.2%) 52 (57.8%) 324 (53.2%)

Female 63 (49.6%) 66 (46.8%) 38 (42.2%) 285 (46.8%)

S126 • CID 2023:76 (Suppl 1) • Keita et al

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciad060#supplementary-data


peak in January during the dry season when temperatures were 
slightly higher. Rotavirus was predominant outside of the rainy 
season and peaked in February with no apparent variation by 
temperature.

In Mali, there were multiple peaks of adenovirus 40/41 cases 
with almost all in March, May–June, and September–November. 
The largest peak ended during the rainy season in June, as tem
peratures began to fall, and the smallest peak lasted several 
months. There was no clear trend in adenovirus 40/41 cases rel
ative to rainfall with peaks in both the rainy and dry seasons. 
There were 2 seasonal peaks of astrovirus, both larger than ade
novirus 40/41, with the largest peak during the cool, rainy season 
and the other peak in February when the weather was warmer 
and drier. The rotavirus season coincided with the dry season.

In Kenya, peaks in adenovirus 40/41 (January) and astrovi
rus (March) were followed by second peaks in May (adenovirus 
40/41) and June (astrovirus). Each peaked during the rainy sea
son and dry season. While there was little variability in 

temperature, the first adenovirus 40/41 peak occurred during 
the warmer dry period. There were no clear seasonality trends 
in sapovirus cases.

DISCUSSION

MSD continues to negatively impact young children in Africa. 
Among the 4 viral pathogens included in this analysis, rotavirus 
is the most common cause of MSD, accounting for 12.6% of all 
cases. In addition, while less common than rotavirus, adenovi
rus 40/41, astrovirus, and sapovirus are associated with MSD 
among young children in Africa, cumulatively accounting for 
6.5% of MSD cases. The significance of the association varied 
by site and age [Kotloff et al., in preparartion]. Given the im
portance of norovirus in the post-rotavirus vaccine setting 
and the late stage development of several norovirus vaccines, 
we report on norovirus infections in a separate article [8]. 
Researchers found that the norovirus prevalence in cases and 

Table 3. Clinical Severity of Adenovirus 40/41-, Astrovirus-, and Sapovirus-Attributable Cases in the Vaccine Impact on Diarrhea in Africa Study and 
Comparison With Rotavirus

Subcategory P Values

Adenovirus 
40/41 

(n = 121)a
Astrovirus 
(n = 123)a

Sapovirus 
(n = 82) a

Rotavirus
Adenovirus  

40/41 vs 
Rotavirus

Astrovirus 
vs 

Rotavirus

Sapovirus vs 
Rotavirus

All 
(n = 584)a

Kenya 
(n = 180)a All Kenya

Modified Vesikari 
score

Mild 24 (19.8%) 45 (36.6%) 19 (23.2%) 78 (13.4%) 10 (5.6%)

Moderate 45 (37.2%) 54 (43.9%) 40 (48.8%) 202 (34.6%) 57 (31.7%) .097 <.001 <.001 <.001

Severe 52 (43%) 23 (18.7%) 23 (28%) 303 (51.9%) 112 (62.2%)

Median (Q1–Q3) 10 (7–11) 7 (6–10) 9 (7–11) 11 (8–12) 11 (10–12) .022 <.001 <.001 <.001

Maximum number of 
stools per day

3 22 (18.2%) 28 (22.8%) 13 (15.9%) 92 (15.8%) 25 (13.9%)

4–5 69 (57%) 74 (60.2%) 50 (61%) 353 (60.4%) 100 (55.6%) .603 .083 .992 .466

6–10 30 (24.8%) 21 (17.1%) 19 (23.2%) 139 (23.8%) 55 (30.6%)

Days of diarrhea Median (Q1–Q3) 3 (2–4) 3 (2–3) 3 (2–4) 3 (2–3) 3 (2–4) .115 .2797 .3293 .259

Vomited Yes 81 (66.9%) 50 (40.7%) 46 (56.1%) 461 (78.9%) 155 (86.1%) .006 <.001 <.001 <.001

Max number of 
vomiting episodes 
per day

1 13 (16%) 14 (28.0%) 9 (19.6%) 43 (9.3%) 17 (11.0%)

2–4 56 (69.1%) 34 (68.0%) 31 (67.4%) 324 (70.3%) 99 (63.9%) .127 <.001 .074 .115

≥5 12 (14.8%) 2 (4.0%) 6 (13.0%) 94 (20.4%) 39 (25.2%)

Days of vomiting Median (Q1–Q3) 2 (2–3) 2 (1–2) 2 (1–2) 2 (2–3) 2 (1–3) .735 .011 .002 .002

Axillary temperature Median (Q1–Q3) 36.8 
(36.5–37.3)

36.8 
(36.4–37.4)

36.7 
(36.5–37.2)

36.9 
(36.5–37.4)

36.9 
(36.5–37.4)

.184 .394 .081 .058

Dehydration 
category

None 12 (9.9%) 6 (4.9%) 5 (6.1%) 38 (6.5%) 5 (2.8%)

Some 89 (73.6%) 97 (78.9%) 52 (63.4%) 464 (79.5%) 129 (71.7%) .284 .676 <.001 .240

Severe 20 (16.5%) 20 (16.3%) 25 (30.5%) 82 (14.0%) 46 (25.6%)

Treatment None 4 (3.3%) 2 (1.6%) 0 18 (3.1%) 0 .521 <.001 .017 <.001

Oral rehydration only 102 (84.3%) 117 (95.1%) 76 (92.7%) 469 (80.3%) 134 (74.4%)

Intravenous fluids 
and/or 
hospitalization

15 (12.4%) 3 (2.4%) 6 (7.3%) 96 (16.4%) 45 (25.0%)

P values were estimated using the χ2 test or Fisher exact test for categorical variables and the Wilcoxon rank sum test for quantitative variables. Significant values are shown in bold.  
aTo allow for statistical comparisons, moderate-to-severe diarrhea (MSD) cases attributable to more than 1 of adenovirus 40/41, astrovirus, sapovirus, or rotavirus were excluded. Note that 
there was a small number of MSD cases attributable to 1 of the 4 pathogens listed above who did not have data for all modified Verskiari score measures.
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controls and the AFe were higher than seen for adenovirus, as
trovirus, or sapovirus. As measured by the mVS and percent 
with severe dehydration, norovirus severity was similar to ade
novirus 40/41 infections.

Comparisons of our findings to other etiologic studies of 
diarrhea must take into consideration the populations and 
methodologic differences, including the outcome definitions. 
Whereas GEMS and VIDA found that rotavirus, 
Cryptosporidium spp., and Shigella spp. were the most common 
etiologies of MSD [4,12; Kotloff et al., in preparartion], viruses 
caused more diarrhea than bacteria and parasites in the 
Etiology, Risk Factors and Interactions of Enteric Infections 

Figure 1. A, Seasonality of adenovirus 40/41 at each of the 3 Vaccine Impact on
Diarrhea in Africa (VIDA) study sites. The weighted number of qPCR-positive (Ct <3
5) MSD cases has been divided into nonattributable (light gray) and attributable 
(dark gray). In addition to the maximum temperature, months with higher-than-average 
rainfall are indicated by the blue box. B, Seasonality of sapovirus at each of the 3 VIDA 
study sites. The weighted number of qPCR-positive (Ct <35) MSD cases has been di
vided into nonattributable (light gray) and attributable (dark gray). In addition to the 
maximum temperature, months with higher-than-average rainfall are indicated by t
he blue box. C, Seasonality of astrovirus at each of the 3 VIDA study sites. The weighted 
number of qPCR-positive (Ct <35) MSD cases has been divided into nonattributable 
(light gray) and attributable (dark gray). In addition to the maximum temperature, m
onths with higher-than-average rainfall are indicated by the blue box. D, Seasonality 
of rotavirus at each of the 3 VIDA study sites. The weighted number of qPCR-positive 
(Ct <35) MSD cases has been divided into nonattributable (light gray) and attributable 
(dark gray). In addition to the maximum temperature, months with higher-than-average 
rainfall are indicated by the blue box. Abbreviations: Ct, cycle threshold; MSD, 
moderate-to-severe diarrhea; qPCR, quantitative polymerase chain reaction.
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and Malnutrition and the Consequences for Child Health and 
Development (MAL-ED) study, with sapovirus and adenovirus 
40/41 as major etiologies in children aged <2 years [24]. Like 
GEMS and VIDA, MAL-ED measured the proportion of diar
rheal disease attributable to a diverse panel of enteropathogens, 
adjusting for asymptomatic infection in controls. However, 
GEMS and VIDA aimed to study more severe illness and there
fore enrolled episodes that were medically attended in high- 
mortality, low-resource settings. By design, MAL-ED, a 
community-based newborn cohort study, captured milder ep
isodes, 75% of which did not seek medical care and only 10% 
met criteria for MSD. The milder illnesses captured in 

MAL-ED were seen in the context of a higher prevalence of vi
ral agents. As seen in this analysis, adenovirus 40/41, astrovirus, 
and sapovirus were common in controls as well as MSD cases, 
resulting in the lower attributable infections reported herein.

Despite the modest AFe of 2.7%, the impact of adenovirus 40/ 
41 in this analysis is notable with severity being comparable to that 
of rotavirus MSD by most measures. Likewise, among children 
aged <1 year, severity of disease measured by mVS was higher 
for rotavirus and adenovirus 40/41 compared with sapovirus 
and astrovirus. Adenovirus 40/41 as a cause of MSD, including se
vere dehydrating diarrhea, was reported from a cohort of hospital
ized children in Bangladesh [40], where it was the second leading 

Figure 1. Continued Figure 1. Continued
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cause of severe diarrhea in the youngest children. Of note, rotavi
rus vaccines have not yet been introduced in Bangladesh. That ad
enovirus causes severe diarrhea is an important finding for future 
investments in preventive measures, as averting severe clinical 
outcomes is the highest priority.

While 67 human adenovirus serotypes have been identified 
to date, adenovirus 40/41 is the most consistently associated 
with diarrhea and acute gastroenteritis in children [41]. 
There are, however, other human adenoviruses that cause 
MSD, but these are uncommon [41]. In VIDA, the qPCR 
only detected adenovirus 40/41 and might have missed 
non-40/41 adenoviruses. For example, in GEMS-1A, non-40/ 
41 adenoviruses that caused diarrhea were detected using en
zyme immunoassays in Bangladesh and Mali [12].

The frequency of detection of sapovirus is variable across geo
graphic locations and age groups. In a recent review, sapovirus 
was detected in 1%–15% of children aged <5 years who present
ed to medical facilities with diarrhea [24, 42]. In MAL-ED, sap
ovirus detection was higher in younger children and in 
lower-resource settings [24]. In this study, sapovirus was detect
ed in at least 11% of both cases and controls, and we only iden
tified sapovirus as an etiologic agent of MSD in Kenya. When 
restricted to the Kenya site, rotavirus and sapovirus MSD cases 
categorized in the severe dehydration category were high and 
comparable at 25.6% and 30.5%, respectively. Importantly, ad
ministration of treatment was excellent at the Kenya site, with 
100% of children with sapovirus or rotavirus receiving rehydra
tion treatment regardless of dehydration category.

Compared to adenovirus 40/41 and sapovirus, astrovirus was 
detected in fewer cases and controls in this study. However, as
trovirus was associated with MSD, with an etiologic fraction of 
2.9%. Astroviruses have been strongly associated with diarrhea 
among young children in several studies, including among chil
dren aged <6 months [43]. Astrovirus infection was generally 
less severe than rotavirus infection, as determined by both 
mVS and the number of children hospitalized and/or receiving 
IV treatment for their diarrhea.

The seasonality of virus circulation varied by pathogen and lo
cation. The pattern seen in The Gambia for adenovirus 40/41 and 
astrovirus, favoring the cool, rainy season, is consistent with previ
ous work [44] and possibly explained by spending more time in
side due to the cooler temperatures and/or precipitation. 
Rotavirus peaked during the dry season in Mali and The 
Gambia, also corroborating seasonal trends seen elsewhere in 
Africa [45]. Seasonality was not pronounced for any virus in 
Kenya.

Our study has limitations that need to be considered when in
terpreting the results. The detection of these viruses is heterog
enous across geographies and populations, which may limit the 
generalizability of our findings. While there is no clear or con
sistent way to handle coinfections in children with diarrhea, co
infections with 2 or more of the viruses studied herein were 

uncommon [46]. Finally, while the mVS has been used in assess
ing rotavirus severity in low-resource settings [7, 38], it has not 
been validated as a measure of severity for the other viral 
pathogens.

CONCLUSIONS

Rotavirus continues to be a frequent cause of MSD, even after 
rotavirus vaccine introduction, emphasizing the need to opti
mize rotavirus vaccine coverage while continuing to develop 
second-generation rotavirus vaccines. Further, with the use of 
sensitive molecular microbiological diagnostics, adenovirus 
40/41, astrovirus, and sapovirus are increasingly recognized 
as diarrheal pathogens, and a better understanding of risk fac
tors for acquiring these viral infections is needed. Dehydration 
was common in children who presented with MSD at these 
sites, regardless of viral etiology, further emphasizing the im
portance of adequate rehydration in all cases of MSD.
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