23 research outputs found

    Thinking Outside a Less Intact Box: Thalamic Dopamine D2 Receptor Densities Are Negatively Related to Psychometric Creativity in Healthy Individuals

    Get PDF
    Several lines of evidence support that dopaminergic neurotransmission plays a role in creative thought and behavior. Here, we investigated the relationship between creative ability and dopamine D2 receptor expression in healthy individuals, with a focus on regions where aberrations in dopaminergic function have previously been associated with psychotic symptoms and a genetic liability to schizophrenia. Scores on divergent thinking tests (Inventiveness battery, Berliner Intelligenz Struktur Test) were correlated with regional D2 receptor densities, as measured by Positron Emission Tomography, and the radioligands [11C]raclopride and [11C]FLB 457. The results show a negative correlation between divergent thinking scores and D2 density in the thalamus, also when controlling for age and general cognitive ability. Hence, the results demonstrate that the D2 receptor system, and specifically thalamic function, is important for creative performance, and may be one crucial link between creativity and psychopathology. We suggest that decreased D2 receptor densities in the thalamus lower thalamic gating thresholds, thus increasing thalamocortical information flow. In healthy individuals, who do not suffer from the detrimental effects of psychiatric disease, this may increase performance on divergent thinking tests. In combination with the cognitive functions of higher order cortical networks, this could constitute a basis for the generative and selective processes that underlie real life creativity

    Schizophrenia-Like Attentional Deficits Following Blockade of Prefrontal Cortex GABAA Receptors

    No full text
    Attentional deficits are a core symptom of schizophrenia. Post-mortem analyses of the brains of schizophrenics reveal consistent abnormalities in γ-aminobutyric acid (GABA) interneurons indicative of reduced cortical GABA transmission, raising the possibility that this pathology contributes to attentional deficits. We examined whether blockade of prefrontal cortex (PFC) GABAA receptors with bicuculline (BMI) impairs attention in rats using the 5-choice serial reaction time task (5CSRTT). For comparison, we also examined whether administration of the GABAA receptor agonist muscimol (MUS) would improve attention. In parallel, we examined the effects of both manipulations on activity in an open field and on motivation using the intracranial self-stimulation (ICSS) test. BMI increased PFC neuronal activity, as reflected by increased Fos immunolabeling, and impaired attention, as reflected by decreased accuracy and increased omissions. Although increased omissions also may reflect reductions in locomotor activity or motivation, the overall pattern of effects does not support either of these interpretations: BMI did not affect locomotor activity, and it enhanced motivation in the ICSS test. MUS did not affect attention, although it increased impulsive behavior at a dose that suppressed PFC neuronal activity, as reflected by decreased Fos immunolabeling. These impulsivity effects are not due to altered locomotor activity (which was decreased) or motivation (which was not affected). Our data support the hypothesis that cortical GABA neurons have an important role in regulating attention and may have direct implications for the treatment of schizophrenia
    corecore