808 research outputs found

    Regression of murine lung tumors by the let-7 microRNA.

    Get PDF
    MicroRNAs (miRNAs) have recently emerged as an important new class of cellular regulators that control various cellular processes and are implicated in human diseases, including cancer. Here, we show that loss of let-7 function enhances lung tumor formation in vivo, strongly supporting the hypothesis that let-7 is a tumor suppressor. Moreover, we report that exogenous delivery of let-7 to established tumors in mouse models of non-small-cell lung cancer (NSCLC) significantly reduces the tumor burden. These results demonstrate the therapeutic potential of let-7 in NSCLC and point to miRNA replacement therapy as a promising approach in cancer treatment

    A Preliminary Look at Space Weathering on 101955 Bennu: A Radiative Tranfer Modeling Perspective

    Get PDF
    The surfaces of airless bodies, such as 101955 Bennu, are vulnerable to micrometeoroids, high-energy particles, and solar wind particles. As a result, material on the surface of these bodies experience physical and chemical changes that are collectively known as space weathering. Space weathering processes result in the production of sub-micronsized particles called submicroscopic particles. There are two types of submicroscopic particles, nanophase (33 nm in size). Studies of lunar samples show that nanophase particles occur within the glassy rims that surround grains and agglutinates. In contrast, microphase iron particles occur only within agglutinates. Another important difference between these two particles is that nanophase and microphase particles affect visible to near-infrared reflectance spectra differently. From lunar samples, the presence of nanophase particles in a regolith causes the regoliths reflectance spectrum to darken and redden, whereas the presence of microphase particles in a regolith causes it to only darken. In addition, the reflectance spectra of submicroscopic particle-bearing regolith exhibit weakened absorptions and spectral features. Lantz et al. (2018) found that these particles also affect spectral curvature [8]. By taking advantage of these spectral characteristics, with global spectral data, it is possible to model the nanophase and microphase particle abundances across a planetary surface resulting in the production of global space weathering maps

    Coordinated Analysis of an Experimentally Space Weathered Carbonaceous Chondrite

    Get PDF
    The surfaces of airless bodies experience solar wind irradiation and micrometeorite impacts, a process collectively known as space weathering. These mechanisms alter the chemical composition, microstructure, and optical properties of surface materials and considerable work has been done to understand this phenomenon in lunar and ordinary chondritic materials. However, ongoing sample return missions Hayabusa2 to asteroid Ryugu and OSIRIS-REx to asteroid Bennu have prompted the need to study the effects of space weathering on hydrated, organic-rich materials, especially in the context of early results. Understanding space weathering of these samples is critical for properly interpreting remote sensing data during asteroid encounters, for sample site selection, and for the eventual study of returned samples. We can better understand space weathering of carbonaceous materials by simulating these processes in the laboratory. Recent experiments have shown that the changes in spectral characteristics of carbonaceous chondrites are not consistent among experiments, suggesting additional work is needed before these results can inform our understanding of spectral variations on asteroidal surfaces. Similarly, substantial work remains to characterize the chemical and microstructural effects of these processes in order to correlate these features with spectral changes. Here, we build on our previous work, presenting new results of the pulsed laser irradiation of the Murchison (CM2) meteorite to simulate micrometeorite impacts and the progressive space weathering of carbonaceous surfaces

    Interstellar Holography

    Get PDF
    The dynamic spectrum of a radio pulsar is an in-line digital hologram of the ionised interstellar medium. It has previously been demonstrated that such holograms permit image reconstruction, in the sense that one can determine an approximation to the complex electric field values as a function of Doppler-shift and delay, but to date the quality of the reconstructions has been poor. Here we report a substantial improvement in the method which we have achieved by simultaneous optimisation of the thousands of coefficients that describe the electric field. For our test spectrum of PSR B0834+06 we find that the model provides an accurate representation of the data over the full 63 dB dynamic range of the observations: residual differences between model and data are noise-like. The advent of interstellar holography enables detailed quantitative investigation of the interstellar radio-wave propagation paths for a given pulsar at each epoch of observation; we illustrate this using our test data which show the scattering material to be structured and highly anisotropic. The temporal response of the medium exhibits a scattering tail out to beyond 100 microsec and a pulse arrival time measurement at this frequency and this epoch of observation would be affected by a mean delay of 15 microsec due to multipath propagation in the interstellar medium.Comment: Submitted to MNRAS, 8 pages, 5 figure

    Evaluation of the INCREMENT-CPE, Pitt Bacteremia and qPitt Scores in Patients with Carbapenem-Resistant Enterobacteriaceae Infections Treated with Ceftazidime–Avibactam

    Get PDF
    Background The aim of this study was to evaluate the predictive performance of the INCREMENT-CPE (ICS), Pitt bacteremia score (PBS) and qPitt for mortality among patients treated with ceftazidime–avibactam for carbapenem-resistant Enterobacteriaceae (CRE) infections. Methods Retrospective, multicenter, cohort study of patients with CRE infections treated with ceftazidime–avibactam between 2015 and 2019. The primary outcome was 30-day all-cause mortality. Predictive performance was determined by assessing discrimination, calibration and precision. Results In total, 109 patients were included. Thirty-day mortality occurred in 18 (16.5%) patients. There were no significant differences in discrimination of the three scores [area under the curve (AUC) ICS 0.7039, 95% CI 0.5848–0.8230, PBS 0.6893, 95% CI 0.5709–0.8076, and qPitt 0.6847, 95% CI 0.5671–0.8023; P > 0.05 all pairwise comparisons]. All scores showed adequate calibration and precision. When dichotomized at the optimal cut-points of 11, 3, and 2 for the ICS, PBS, and qPitt, respectively, all scores had NPV > 90% at the expense of low PPV. Patients in the high-risk groups had a relative risk for mortality of 3.184 (95% CI 1.35–8.930), 3.068 (95% CI 1.094–8.606), and 2.850 (95% CI 1.016–7.994) for the dichotomized ICS, PBS, and qPitt, scores respectively. Treatment-related variables (early active antibiotic therapy, combination antibiotics and renal ceftazidime–avibactam dose adjustment) were not associated with mortality after controlling for the risk scores. Conclusions In patients treated with ceftazidime–avibactam for CRE infections, mortality risk scores demonstrated variable performance. Modifications to scoring systems to more accurately predict outcomes in the era of novel antibiotics are warranted

    Introducing the “analogs for Venus’ geologically recent surfaces” initiative: an opportunity for identifying and analyzing recently active volcano-tectonic areas of Venus trough a comparative study with terrestrial analogs

    Get PDF
    Several missions to Venus have been recently selected for launch [1–6], opening a new era for the exploration of the planet. One of the key questions that the future missions need to address is whether Venus is presently volcanically active [7–15]. Studying areas of active volcanism and tectonism on Venus is crucial to reveal clues about the geologic past of the planet, as well as provide information about the volatile content of its interior and the formation of its dense atmosphere. The “Analogsfor VENus’ GEologically Recent Surfaces” (AVENGERS) initiative aims to build a comprehensive database of terrestrial analog sites for the comparative study of recent and possibly on- going volcanic activity on Venus. Besides its scientific relevance, the AVENG- ERS initiative also acts as a bridge for international scientific collaboration, including the leadership and/or team members from the currently selected missions to Venus

    Molecular fragment characteristics and distribution of tangle associated TDP-43 (TATs) and other TDP-43 lesions in Alzheimer’s disease

    Get PDF
    TAR DNA binding protein 43 (TDP-43) pathology is a defining feature of frontotemporal lobar degeneration (FTLD). In FTLD-TDP there is a moderate-to-high burden of morphologically distinctive TDP-43 immunoreactive inclusions distributed throughout the brain. In Alzheimer’s disease (AD), similar TDP-43 immunoreactive inclusions are observed. In AD, however, there is a unique phenomenon of neurofibrillary tangle-associated TDP-43 (TATs) whereby TDP-43 intermingles with neurofibrillary tangles. Little is known about the characteristics and distribution of TATs, or how burden and distribution of TATs compares to burden and distribution of other FTLD-TDP-like lesions observed in AD. Here we characterize molecular fragment characteristics, burden and distribution of TATs and assess how these features compare to features of other TDP-43 lesions. We performed TDP-43 immunohistochemistry with anti-phosphorylated, C- and N-terminal TDP-43 antibodies in 20 high-probability AD cases and semi-quantitative burden of seven inclusion types within five brain regions (entorhinal cortex, subiculum, CA1 and dentate gyrus of hippocampus, occipitotemporal cortex). Hierarchical cluster analysis was used to analyze the dataset that consisted of 75 different combinations of neuropathological features. TATs were nonspherical with heterogeneous staining patterns and present in all regions except hippocampal dentate. All three antibodies detected TATs although N-terminal antibody sensitivity was low. Three clusters were identified: Cluster-1 had mild-moderate TATs, moderate-frequent neuronal cytoplasmic inclusions, dystrophic neurites, neuronal intranuclear inclusions and fine neurites, and perivascular and granular inclusions identified only with the N-terminal antibody throughout the brain; Cluster-2 had scant TATs in limbic regions and Cluster-3 mild-moderate TATs and mild-moderate neuronal cytoplasmic inclusions and dystrophic neurites throughout the brain and moderate fine neurites. Only 17% of cluster 1 cases had the TMEM106b GG (protective) haplotype and 83% had hippocampal sclerosis. Both features differed across clusters (p=0.03 & p=0.01). TATs have molecular characteristics, distribution and burden, and genetic and pathologic associations like FTLD-TDP lesions
    • …
    corecore