17,713 research outputs found

    Ground state fluctuations in finite Fermi and Bose systems

    Full text link
    We consider a small and fixed number of fermions (bosons) in a trap. The ground state of the system is defined at T=0. For a given excitation energy, there are several ways of exciting the particles from this ground state. We formulate a method for calculating the number fluctuation in the ground state using microcanonical counting, and implement it for small systems of noninteracting fermions as well as bosons in harmonic confinement. This exact calculation for fluctuation, when compared with canonical ensemble averaging, gives considerably different results, specially for fermions. This difference is expected to persist at low excitation even when the fermion number in the trap is large.Comment: 20 pages (including 1 appendix), 3 postscript figures. An error was found in one section of the paper. The corrected version is updated on Sep/05/200

    Constraints on scalar diffusion anomaly in three-dimensional flows having bounded velocity gradients

    Full text link
    This study is concerned with the decay behaviour of a passive scalar Ξ\theta in three-dimensional flows having bounded velocity gradients. Given an initially smooth scalar distribution, the decay rate d/dtd/dt of the scalar variance is found to be bounded in terms of controlled physical parameters. Furthermore, in the zero diffusivity limit, Îș→0\kappa\to0, this rate vanishes as Îșα0\kappa^{\alpha_0} if there exists an α0∈(0,1]\alpha_0\in(0,1] independent of Îș\kappa such that <∞<\infty for α≀α0\alpha\le\alpha_0. This condition is satisfied if in the limit Îș→0\kappa\to0, the variance spectrum Θ(k)\Theta(k) remains steeper than k−1k^{-1} for large wave numbers kk. When no such positive α0\alpha_0 exists, the scalar field may be said to become virtually singular. A plausible scenario consistent with Batchelor's theory is that Θ(k)\Theta(k) becomes increasingly shallower for smaller Îș\kappa, approaching the Batchelor scaling k−1k^{-1} in the limit Îș→0\kappa\to0. For this classical case, the decay rate also vanishes, albeit more slowly -- like (ln⁥Pr)−1(\ln P_r)^{-1}, where PrP_r is the Prandtl or Schmidt number. Hence, diffusion anomaly is ruled out for a broad range of scalar distribution, including power-law spectra no shallower than k−1k^{-1}. The implication is that in order to have a Îș\kappa-independent and non-vanishing decay rate, the variance at small scales must necessarily be greater than that allowed by the Batchelor spectrum. These results are discussed in the light of existing literature on the asymptotic exponential decay ∌e−γt\sim e^{-\gamma t}, where Îł>0\gamma>0 is independent of Îș\kappa.Comment: 6-7 journal pages, no figures. accepted for publication by Phys. Fluid

    Large-scale bottleneck effect in two-dimensional turbulence

    Full text link
    The bottleneck phenomenon in three-dimensional turbulence is generally associated with the dissipation range of the energy spectrum. In the present work, it is shown by using a two-point closure theory, that in two-dimensional turbulence it is possible to observe a bottleneck at the large scales, due to the effect of friction on the inverse energy cascade. This large-scale bottleneck is directly related to the process of energy condensation, the pile-up of energy at wavenumbers corresponding to the domain size. The link between the use of friction and the creation of space-filling structures is discussed and it is concluded that the careless use of hypofriction might reduce the inertial range of the energy spectrum

    Coxiella burnetii Blocks Intracellular Interleukin-17 Signaling in Macrophages

    Get PDF
    Coxiella burnetii is an obligate intracellular bacterium and the etiological agent of Q fever. Successful host cell infection requires the Coxiella type IVB secretion system (T4BSS), which translocates bacterial effector proteins across the vacuole membrane into the host cytoplasm, where they manipulate a variety of cell processes. To identify host cell targets of Coxiella T4BSS effector proteins, we determined the transcriptome of murine alveolar macrophages infected with a Coxiella T4BSS effector mutant. We identified a set of inflammatory genes that are significantly upregulated in T4BSS mutant-infected cells compared to mock-infected cells or cells infected with wild-type (WT) bacteria, suggesting that Coxiella T4BSS effector proteins downregulate the expression of these genes. In addition, the interleukin-17 (IL-17) signaling pathway was identified as one of the top pathways affected by the bacteria. While previous studies demonstrated that IL-17 plays a protective role against several pathogens, the role of IL-17 during Coxiella infection is unknown. We found that IL-17 kills intracellular Coxiella in a dose-dependent manner, with the T4BSS mutant exhibiting significantly more sensitivity to IL-17 than WT bacteria. In addition, quantitative PCR confirmed the increased expression of IL-17 downstream signaling genes in T4BSS mutant-infected cells compared to WT- or mock-infected cells, including the proinflammatory cytokine genes Il1a, Il1b, and Tnfa, the chemokine genes Cxcl2 and Ccl5, and the antimicrobial protein gene Lcn2 We further confirmed that the Coxiella T4BSS downregulates macrophage CXCL2/macrophage inflammatory protein 2 and CCL5/RANTES protein levels following IL-17 stimulation. Together, these data suggest that Coxiella downregulates IL-17 signaling in a T4BSS-dependent manner in order to escape the macrophage immune response

    Geometrically nonlinear isogeometric analysis of laminated composite plates based on higher-order shear deformation theory

    Full text link
    In this paper, we present an effectively numerical approach based on isogeometric analysis (IGA) and higher-order shear deformation theory (HSDT) for geometrically nonlinear analysis of laminated composite plates. The HSDT allows us to approximate displacement field that ensures by itself the realistic shear strain energy part without shear correction factors. IGA utilizing basis functions namely B-splines or non-uniform rational B-splines (NURBS) enables to satisfy easily the stringent continuity requirement of the HSDT model without any additional variables. The nonlinearity of the plates is formed in the total Lagrange approach based on the von-Karman strain assumptions. Numerous numerical validations for the isotropic, orthotropic, cross-ply and angle-ply laminated plates are provided to demonstrate the effectiveness of the proposed method

    Large-scale albuminuria screen for nephropathy models in chemically induced mouse mutants

    Get PDF
    Background/Aim: Phenotype-driven screening of a great pool of randomly mutant mice and subsequent selection of animals showing symptoms equivalent to human kidney diseases may result in the generation of novel suitable models for the study of the pathomechanisms and the identification of genes involved in kidney dysfunction. Methods: We carried out a large-scale analysis of ethylnitrosourea (ENU)-induced mouse mutants for albuminuria by using qualitative SDS-polyacrylamide gel electrophoresis. Results: The primary albuminuria screen preceded the comprehensive phenotypic mutation analysis in a part of the mice of the Munich ENU project to avoid loss of mutant animals as a consequence of prolonged suffering from severe nephropathy. The primary screen detected six confirmed phenotypic variants in 2,011 G1 animals screened for dominant mutations and no variant in 48 G3 pedigrees screened for recessive mutations. Further breeding experiments resulted in two lines showing a low phenotypic penetrance of albuminuria. The secondary albuminuria screen was carried out in mutant lines which were established in the Munich ENU project without preceding primary albuminuria analysis. Two lines showing increased plasma urea levels were chosen to clarify if severe kidney lesions are involved in the abnormal phenotype. This analysis revealed severe albuminuria in mice which are affected by a recessive mutation leading to increased plasma urea and cholesterol levels. Conclusion: Thus, the phenotypic selection of ENU-induced mutants according to the parameter proteinuria in principle demonstrates the feasibility to identify nephropathy phenotypes in ENU-mutagenized mice. Copyright (C) 2005 S. Karger AG, Basel

    Ab initio insights into the interaction mechanisms between H2_2, H2_2O, and O2_2 molecules with diamond surfaces

    Full text link
    Diamond displays outstanding chemical, physical, and tribological properties, making it attractive for numerous applications ranging from biomedicine to tribology. However, the reaction of the materials with molecules present in the air, such as oxygen, hydrogen, and water, could significantly change the electronic and tribological properties of the films. In this study, we performed several density functional theory calculations to construct a database for the adsorption energies and dissociation barriers of these molecules on the most relevant diamond surfaces, including C(111), C(001), and C(110). The adsorption configurations, reaction paths, activation energies, and their influence on the structure of diamond surfaces are discussed. The results indicate that there is a strong correlation between adsorption energy and surface energy. Moreover, we found that the dissociation processes of oxygen molecules on these diamond surfaces can significantly alter the surface morphology and may affect the tribological properties of diamond films. These findings can help to advance the development and optimization of devices and antiwear coatings based on diamond

    HIV with contact-tracing: a case study in Approximate Bayesian Computation

    Full text link
    Missing data is a recurrent issue in epidemiology where the infection process may be partially observed. Approximate Bayesian Computation, an alternative to data imputation methods such as Markov Chain Monte Carlo integration, is proposed for making inference in epidemiological models. It is a likelihood-free method that relies exclusively on numerical simulations. ABC consists in computing a distance between simulated and observed summary statistics and weighting the simulations according to this distance. We propose an original extension of ABC to path-valued summary statistics, corresponding to the cumulated number of detections as a function of time. For a standard compartmental model with Suceptible, Infectious and Recovered individuals (SIR), we show that the posterior distributions obtained with ABC and MCMC are similar. In a refined SIR model well-suited to the HIV contact-tracing data in Cuba, we perform a comparison between ABC with full and binned detection times. For the Cuban data, we evaluate the efficiency of the detection system and predict the evolution of the HIV-AIDS disease. In particular, the percentage of undetected infectious individuals is found to be of the order of 40%
    • 

    corecore