8 research outputs found

    Deformation capturing of concrete structures at elevated temperatures

    Get PDF
    Reliable deformation measurement is required for proper quantification of fire performance of concrete structures. Predictive capability of models for many critical properties, including Young’s moduli, stress-strain relationships and load-induced thermal strains, is first and foremost dependent on such reliable deformation capturing. This paper first presents a state-of-the-art review of existing methods for capturing deformation of concrete structures at elevated temperatures. Key merits, limitations and challenges associated with each measuring technique are discussed. It is shown that existing testing facilities and measuring instruments generally do not allow reliable direct measurement of deformation and strain of high-temperature concrete. As a result, the deformation has typically been captured either indirectly or outside the heated zones, inevitably introducing additional uncertainty and errors that are difficult to be adequately quantified. On the basis of that review, the paper details a new test set-up for reliable non-contact full-field deformation capturing of concrete structures at high temperatures using 3D Digital Image Correlation technique. Key features of the new setup that enable to successfully address major challenges of thermal boundary condition, thermal stability of speckle pattern, contrast of image and hot air movement are presented; together with evidences giving confidence to the reliability of such set-up. With its combined advantages of reliable full-field deformation capturing and thermal boundary conditions on test specimens, the new set-up allows to generate required reliable data on performance of concrete at elevated temperatures, thereby facilitating the development of effective rational fire design and analysis of concrete structures

    Temporal Fluctuation of Multidrug Resistant Salmonella Typhi Haplotypes in the Mekong River Delta Region of Vietnam

    Get PDF
    BACKGROUND: typhoid fever remains a public health problem in Vietnam, with a significant burden in the Mekong River delta region. Typhoid fever is caused by the bacterial pathogen Salmonella enterica serovar Typhi (S. Typhi), which is frequently multidrug resistant with reduced susceptibility to fluoroquinolone-based drugs, the first choice for the treatment of typhoid fever. We used a GoldenGate (Illumina) assay to type 1,500 single nucleotide polymorphisms (SNPs) and analyse the genetic variation of S. Typhi isolated from 267 typhoid fever patients in the Mekong delta region participating in a randomized trial conducted between 2004 and 2005. PRINCIPAL FINDINGS: the population of S. Typhi circulating during the study was highly clonal, with 91% of isolates belonging to a single clonal complex of the S. Typhi H58 haplogroup. The patterns of disease were consistent with the presence of an endemic haplotype H58-C and a localised outbreak of S. Typhi haplotype H58-E2 in 2004. H58-E2-associated typhoid fever cases exhibited evidence of significant geo-spatial clustering along the Sông H u branch of the Mekong River. Multidrug resistance was common in the established clone H58-C but not in the outbreak clone H58-E2, however all H58 S. Typhi were nalidixic acid resistant and carried a Ser83Phe amino acid substitution in the gyrA gene. SIGNIFICANCE: the H58 haplogroup dominates S. Typhi populations in other endemic areas, but the population described here was more homogeneous than previously examined populations, and the dominant clonal complex (H58-C, -E1, -E2) observed in this study has not been detected outside Vietnam. IncHI1 plasmid-bearing S. Typhi H58-C was endemic during the study period whilst H58-E2, which rarely carried the plasmid, was only transient, suggesting a selective advantage for the plasmid. These data add insight into the outbreak dynamics and local molecular epidemiology of S. Typhi in southern Vietnam

    Immunological and Biochemical Correlates of Adjunctive Dexamethasone in Vietnamese Adults with Bacterial Meningitis

    No full text
    Adjunctive treatment to improve outcome from bacterial meningitis has centered on dexamethasone. Among Vietnamese patients with bacterial meningitis, cerebrospinal fluid (CSF) opening pressure and CSF:plasma glucose ratios were significantly improved and levels of CSF cytokines interleukin (IL)-6, IL-8, and IL-10 and were all statistically significantly lower after treatment in patients who were randomized to dexamethasone, compared with levels in patients who received placebo

    The Role of Maternally Acquired Antibody in Providing Protective Immunity Against Nontyphoidal Salmonella in Urban Vietnamese Infants: A Birth Cohort Study

    Get PDF
    Background: Nontyphoidal Salmonella (NTS) organisms are a major cause of gastroenteritis and bacteremia, but little is known about maternally acquired immunity and natural exposure in infant populations residing in areas where NTS disease is highly endemic. Methods: We recruited 503 pregnant mothers and their infants (following delivery) from urban areas in Vietnam and followed infants until they were 1 year old. Exposure to the dominant NTS serovars, Salmonella enterica serovars Typhimurium and Enteritidis, were assessed using lipopolysaccharide (LPS) O antigen-specific antibodies. Antibody dynamics, the role of maternally acquired antibodies, and NTS seroincidence rates were modeled using multivariate linear risk factor models and generalized additive mixed-effect models. Results: Transplacental transfer of NTS LPS-specific maternal antibodies to infants was highly efficient. Waning of transplacentally acquired NTS LPS-specific antibodies at 4 months of age left infants susceptible to Salmonella organisms, after which they began to seroconvert. High seroincidences of S. Typhimurium and S. Enteritidis LPS were observed, and infants born with higher anti-LPS titers had greater plasma bactericidal activity and longer protection from seroconversion. Conclusions: Although Vietnamese infants have extensive exposure to NTS, maternally acquired antibodies appear to play a protective role against NTS infections during early infancy. These findings suggest that prenatal immunization may be an appropriate strategy to protect vulnerable infants from NTS disease

    The validation and utility of a quantitative one-step multiplex RT real-time PCR targeting Rotavirus A and Norovirus

    Get PDF
    Rotavirus (RoV) and Norovirus (NoV) are the main causes of viral gastroenteritis. Currently, there is no validated multiplex real-time PCR that can detect and quantify RoV and NoV simultaneously. The aim of the study was to develop, validate, and internally control a multiplex one-step RT real-time PCR to detect and quantify RoV and NoV in stool samples. PCR sensitivity was assessed by comparing amplification against the current gold standard, enzyme immunoassay (EIA), on stool samples from 94 individuals with diarrhea and 94 individuals without diarrhea. PCR detected 10% more RoV positive samples than EIA in stools samples from patients with diarrhea. PCR detected 23% more NoV genogroup II positive samples from individuals with diarrhea and 9% more from individuals without diarrhea than EIA, respectively. Genotyping of the PCR positive/EIA negative samples suggested the higher rate of PCR positivity, in comparison to EIA, was due to increased sensitivity, rather than nonspecific hybridization. Quantitation demonstrated that the viral loads of RoV and NoV in the stools of diarrheal patients were an order of magnitude greater than in individuals without diarrhea. This internally controlled real-time PCR method is robust, exhibits a high degree of reproducibility, and may have a greater utility and sensitivity than commercial EIA kits

    DVP: A Novel High-Availability Seamless Redundancy (HSR) Protocol Traffic-Reduction Algorithm for a Substation Automation System Network

    Get PDF
    The high-availability seamless redundancy (HSR) protocol, a potential candidate for substation automation system (SAS) networks, provides duplicated frame copies of each sent frame, with zero fault-recovery time. This means that even in the case of node or link failure, the destination node will receive at least one copy of the sent frame. Consequently, there is no network operation down time. However, the forwarding process of the QuadBox node in HSR is not smart and relies solely on duplication and random forwarding of all received frames. Thus, if a unicast frame is sent in any closed-loop network, the frame copies will be spread through most of all the links in both directions until they reach the destination node, which inevitably results in significant, unnecessary network traffic. In this paper, we present an algorithm called the dual virtual paths (DVP) algorithm to solve such an HSR excessive traffic issue. The idea behind our DVP algorithm is to establish automatic DVP between each HSR node and all the other nodes in the network, except for the QuadBox node. These virtual paths will be used for DVP unicast traffic transmission, rather than using the standard HSR transmission process. Therefore, the DVP algorithm results in less traffic, because there is no duplication or random forwarding, contrary to standard HSR. For the sample networks selected in this paper, the DVP algorithm shows more than a 70% reduction in network traffic and about an 80% reduction in the discarded traffic compared to the standard HSR protocol

    A multi centre randomized open label trial of chloroquine for the treatment of adults with SARS-CoV-2 infection in Vietnam

    No full text
    Background: COVID-19 is a respiratory disease caused by a novel coronavirus (SARS-CoV-2) and causes substantial morbidity and mortality. There is currently no vaccine to prevent COVID-19 or therapeutic agent to treat COVID-19. This clinical trial is designed to evaluate chloroquine as a potential therapeutic for the treatment of hospitalised people with COVID-19. We hypothesise that chloroquine slows viral replication in patients with COVID-19, attenuating the infection, and resulting in more rapid decline of viral load in throat/nose swabs. This viral attenuation should be associated with improved patient outcomes. Method: The study will start with a 10-patient prospective observational pilot study following the same entry and exclusion criteria as for the randomized trial and undergoing the same procedures. The main study is an open label, randomised, controlled trial with two parallel arms of standard of care (control arm) versus standard of care with 10 days of chloroquine (intervention arm) with a loading dose over the first 24 hours, followed by 300mg base orally once daily for nine days. The study will recruit patients in three sites in Ho Chi Minh City, Vietnam: the Hospital for Tropical Diseases, the Cu Chi Field Hospital, and the Can Gio COVID hospital. The primary endpoint is the time to viral clearance from throat/nose swab, defined as the time following randomization until the midpoint between the last positive and the first of the negative throat/nose swabs. Viral presence will be determined using RT-PCR to detect SARS-CoV-2 RNA. Discussion: The results of the study will add to the evidence-based guidelines for management of COVID-19. Given the enormous experience of its use in malaria chemoprophylaxis, excellent safety and tolerability profile, and its very low cost, if proved effective then chloroquine would be a readily deployable and affordable treatment for patients with COVID-19. Trial registration: Clinicaltrials.gov NCT04328493 31/03/202
    corecore