28 research outputs found

    Assessing Spatiotemporal Drought Dynamics and Its Related Environmental Issues in the Mekong River Delta

    Get PDF
    Drought is a major natural disaster that creates a negative impact on socio-economic development and environment. Drought indices are typically applied to characterize drought events in a meaningful way. This study aims at examining variations in agricultural drought severity based on the relationship between standardized ratio of actual and potential evapotranspiration (ET and PET), enhanced vegetation index (EVI), and land surface temperature (LST) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) platform. A new drought index, called the enhanced drought severity index (EDSI), was developed by applying spatiotemporal regression methods and time-series biophysical data derived from remote sensing. In addition, time-series trend analysis in the 2001–2018 period, along with the Mann–Kendal (MK) significance test and the Theil Sen (TS) slope, were used to examine the spatiotemporal dynamics of environmental parameters (i.e., LST, EVI, ET, and PET), and geographically weighted regression (GWR) was subsequently applied in order to analyze the local correlations among them. Results showed that a significant correlation was discovered among LST, EVI, ET, and PET, as well as their standardized ratios (|r| > 0.8, p 0.7 and a statistical significance p < 0.01. Besides, it was found that the temporal tendency of this phenomenon was the increase in intensity of drought, and that coastal areas in the study area were more vulnerable to this phenomenon. This study demonstrates the effectiveness of EDSI and the potential application of integrating spatial regression and time-series data for assessing regional drought conditions

    A hidden HIV epidemic among women in Vietnam

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The HIV epidemic in Vietnam is still concentrated among high risk populations, including IDU and FSW. The response of the government has focused on the recognized high risk populations, mainly young male drug users. This concentration on one high risk population may leave other populations under-protected or unprepared for the risk and the consequences of HIV infection. In particular, attention to women's risks of exposure and needs for care may not receive sufficient attention as long as the perception persists that the epidemic is predominantly among young males. Without more knowledge of the epidemic among women, policy makers and planners cannot ensure that programs will also serve women's needs.</p> <p>Methods</p> <p>More than 300 documents appearing in the period 1990 to 2005 were gathered and reviewed to build an understanding of HIV infection and related risk behaviors among women and of the changes over time that may suggest needed policy changes.</p> <p>Results</p> <p>It appears that the risk of HIV transmission among women in Vietnam has been underestimated; the reported data may represent as little as 16% of the real number. Although modeling predicted that there would be 98,500 cases of HIV-infected women in 2005, only 15,633 were accounted for in reports from the health system. That could mean that in 2005, up to 83,000 women infected with HIV have not been detected by the health care system, for a number of possible reasons. For both detection and prevention, these women can be divided into sub-groups with different risk characteristics. They can be infected by sharing needles and syringes with IDU partners, or by having unsafe sex with clients, husbands or lovers. However, most new infections among women can be traced to sexual relations with young male injecting drug users engaged in extramarital sex. Each of these groups may need different interventions to increase the detection rate and thus ensure that the women receive the care they need.</p> <p>Conclusion</p> <p>Women in Vietnam are increasingly at risk of HIV transmission but that risk is under-reported and under-recognized. The reasons are that women are not getting tested, are not aware of risks, do not protect themselves and are not being protected by men. Based on this information, policy-makers and planners can develop better prevention and care programs that not only address women's needs but also reduce further spread of the infection among the general population.</p

    Agricultural drought in the Vietnamese Central Highlands at 1-km resolution: Monthly and annual datasets

    No full text
    Drought is a complex natural hazard which can create significant impacts on society and environment. Given that this phenomenon varies across space and changes over time dependent on various factors (e.g., physical conditions and human activities), the available of spatiotemporal drought data enables a better monitoring and assessment of drought severity This study introduced the integrated multivariate drought index (iMDI) data, a new regional drought index, at 1 km spatial and monthly temporal resolutions for the Vietnamese Central Highlands over a 20-years period. The iMDI was developed recently which is a combination of vegetation condition index (VCI), the temperature condition index (TCI), and the evaporative stress index (ESI) based on the feature of scaling algorithms (i.e., normalisations and standardisation). The data were processed using the median values of MODIS time-series imagery obtained from the Google Earth Engine (GEE) platform. The iMDI datasets are available for monthly and annual drought monitoring between 2001 and 2020. Additionally, the datasets of VCI, TCI, and ESI were provided so that users can apply for their own purposes even though these data can directly obtain from GEE or other sources. Users, especially those without technical expertise, can reap the advantages of having open access to iDMI data. By doing so, they can reduce their expenses and the time required to process data. As such, this accessibility can promote the use of data for diverse applications, such as evaluating the impact of droughts on the environment and human activities and monitoring droughts regionally

    A Review of Spectral Indices for Mangrove Remote Sensing

    No full text
    Mangrove ecosystems provide critical goods and ecosystem services to coastal communities and contribute to climate change mitigation. Over four decades, remote sensing has proved its usefulness in monitoring mangrove ecosystems on a broad scale, over time, and at a lower cost than field observation. The increasing use of spectral indices has led to an expansion of the geographical context of mangrove studies from local-scale studies to intercontinental and global analyses over the past 20 years. In remote sensing, numerous spectral indices derived from multiple spectral bands of remotely sensed data have been developed and used for multiple studies on mangroves. In this paper, we review the range of spectral indices produced and utilised in mangrove remote sensing between 1996 and 2021. Our findings reveal that spectral indices have been used for a variety of mangrove aspects but excluded identification of mangrove species. The included aspects are mangrove extent, distribution, mangrove above ground parameters (e.g., carbon density, biomass, canopy height, and estimations of LAI), and changes to the aforementioned aspects over time. Normalised Difference Vegetation Index (NDVI) was found to be the most widely applied index in mangroves, used in 82% of the studies reviewed, followed by the Enhanced Vegetation Index (EVI) used in 28% of the studies. Development and application of potential indices for mangrove cover characterisation has increased (currently 6 indices are published), but NDVI remains the most popular index for mangrove remote sensing. Ultimately, we identify the limitations and gaps of current studies and suggest some future directions under the topic of spectral index application in connection to time series imagery and the fusion of optical sensors for mangrove studies in the digital era

    A Review of Spectral Indices for Mangrove Remote Sensing

    No full text
    Mangrove ecosystems provide critical goods and ecosystem services to coastal communities and contribute to climate change mitigation. Over four decades, remote sensing has proved its usefulness in monitoring mangrove ecosystems on a broad scale, over time, and at a lower cost than field observation. The increasing use of spectral indices has led to an expansion of the geographical context of mangrove studies from local-scale studies to intercontinental and global analyses over the past 20 years. In remote sensing, numerous spectral indices derived from multiple spectral bands of remotely sensed data have been developed and used for multiple studies on mangroves. In this paper, we review the range of spectral indices produced and utilised in mangrove remote sensing between 1996 and 2021. Our findings reveal that spectral indices have been used for a variety of mangrove aspects but excluded identification of mangrove species. The included aspects are mangrove extent, distribution, mangrove above ground parameters (e.g., carbon density, biomass, canopy height, and estimations of LAI), and changes to the aforementioned aspects over time. Normalised Difference Vegetation Index (NDVI) was found to be the most widely applied index in mangroves, used in 82% of the studies reviewed, followed by the Enhanced Vegetation Index (EVI) used in 28% of the studies. Development and application of potential indices for mangrove cover characterisation has increased (currently 6 indices are published), but NDVI remains the most popular index for mangrove remote sensing. Ultimately, we identify the limitations and gaps of current studies and suggest some future directions under the topic of spectral index application in connection to time series imagery and the fusion of optical sensors for mangrove studies in the digital era

    Spatiotemporal analysis of forest cover change and associated environmental challenges: a case study in the Central Highlands of Vietnam

    No full text
    Spatiotemporal regression combining Theil-Sen median trend and Man-Kendall tests was applied to MODIS time-series data to quantify the trend and rate of change to forest cover in the Central Highlands, Vietnam from 2001 to 2019. Several MODIS data products, including Percent Tree Cover (PTC), Evapotranspiration (ET), Land Surface Temperature (LST), and Gross Primary Productivity (GPP) were selected as indicators for forest cover and climate and carbon cycle patterns. Emerging hot spot analysis was applied to identify patterns of long-term deforestation. Spatial regression analysis using Geographically Weighted Regression (GWR) was performed to understand variations in the relationship between vegetation changes and trends in LST, ET, and GPP. Our analysis reveals that deforestation occurred significantly in the study area with a total decrease of 14.5% in PTC and a total of 7314 deforestation hot spots were identified. Results indicate that forest cover loss explains 72.9%, 67.7%, and 89.4% of the changes in ET, GPP, and LST, respectively, and the levels of influence are heterogenous across space and dependent on the types of deforestation hot spots. The approach introduced in our study can be performed worldwide to address complex research questions about environmental challenges that emerge from deforestation

    Decadal assessment of agricultural drought in the context of land use land cover change using MODIS multivariate spectral index time-series data

    No full text
    Using a multivariate drought index that incorporates important environmental variables and is suitable for a specific geographical region is essential to fully understanding the pattern and impacts of drought severity. This study applied feature scaling algorithms to MODIS time-series imagery to develop an integrated Multivariate Drought Index (iMDI). The iMDI incorporates the vegetation condition index (VCI), the temperature condition index (TCI), and the evaporative stress index (ESI). The 54,474 km2 Vietnamese Central Highlands region, which has been significantly affected by drought severity for several decades, was selected as a test site to assess the feasibility of the iMDI. Spearman correlation between the iMDI and other commonly used spectral drought indices (i.e. the Drought Severity Index (DSI–12) and the annual Vegetation Health Index (VHI–12)) and ground-based drought indices (i.e. the Standardized Precipitation Index (SPI–12) and the Reconnaissance Drought Index (RDI–12)) was employed to evaluate performance of the proposed drought index. Pixel-based linear regression together with clustering models of the iMDI time-series was applied to characterize the spatiotemporal pattern of drought from 2001 to 2020. In addition, a persistent area of LULC types (i.e. forests, croplands, and shrubland) during the 2001–2020 period was used to understand drought variation in relation to LULC. Results suggested that the iMDI outperformed the other spectral drought indices (r > 0.6; p < 0.005). The analysis revealed an increase in drought risk in some provinces of the Central Highlands including Gia Lai, Kon Tum, and Dak Lak. It was also found that changes in LULC patterns could minimize (reforestation) or exacerbate (deforestation) the impacts of drought. Our study suggests that applying a multivariate drought index enables a better understanding of drought patterns at the local scale. This provides valuable information for the development of appropriate land and environmental management practices that can affect and mitigate climate change effects

    Estimating Soil Water Susceptibility to Salinization in the Mekong River Delta Using a Modified DRASTIC Model

    No full text
    Saltwater intrusion risk assessment is a foundational step for preventing and controlling salinization in coastal regions. The Vietnamese Mekong Delta (VMD) is highly affected by drought and salinization threats, especially severe under the impacts of global climate change and the rapid development of an upstream hydropower dam system. This study aimed to apply a modified DRASTIC model, which combines the generic DRASTIC model with hydrological and anthropogenic factors (i.e., river catchment and land use), to examine seawater intrusion vulnerability in the soil-water-bearing layer in the Ben Tre province, located in the VMD. One hundred and fifty hand-auger samples for total dissolved solids (TDS) measurements, one of the reflected salinity parameters, were used to validate the results obtained with both the DRASTIC and modified DRASTIC models. The spatial analysis tools in the ArcGIS software (i.e., Kriging and data classification tools) were used to interpolate, classify, and map the input factors and salinization susceptibility in the study area. The results show that the vulnerability index values obtained from the DRASTIC and modified DRASTIC models were 36–128 and 55–163, respectively. The vulnerable indices increased from inland districts to coastal areas. The Ba Tri and Binh Dai districts were recorded as having very high vulnerability to salinization, while the Chau Thanh and Cho Lach districts were at a low vulnerability level. From the comparative analysis of the two models, it is obvious that the modified DRASTIC model with the inclusion of a river or canal network and agricultural practices factors enables better performance than the generic DRASTIC model. This enhancement is explained by the significant impact of anthropogenic activities on the salinization of soil water content. This study’s results can be used as scientific implications for planners and decision-makers in river catchment and land-use management practices

    Exhaled Nitric Oxide as a Surrogate Marker for Obstructive Sleep Apnea Severity Grading: An In-Hospital Population Study

    No full text
    Khue Dang-Thi-Mai,1 Nhat-Nam Le-Dong,2 Vu Le-Thuong,1 Ngoc Tran-Van,1 Sy Duong-Quy3,4 1Department of Respiratory Diseases, Cho Ray Hospital, Ho Chi Minh City, Vietnam; 2Department of Technology, Sunrise, Namur, Belgium; 3Bio-Medical Research Centre, Lam Dong Medical College, Dalat, Vietnam; 4Penn State Medical College, Hershey Medical Center, Hershey, PA, USACorrespondence: Sy Duong-QuyBio-Medical Research Centre, Lam Dong Medical College, 16 Ngo Quyen, Dalat, VietnamTel +84 918413813Fax +84 2633815000Email [email protected]: Our study aimed to evaluate the relationship between exhaled nitric oxide (eNO) markers and obstructive sleep apnea (OSA) severity and verify the changes in eNO profiles among mild, moderate, and severe OSA subgroups.Methods: This study was a cross-sectional and in-hospital population-based study. We investigated 123 OSA patients (17 mild, 23 moderate and, 83 severe OSA) in the department of respiratory diseases. Studied data included anthropometry, respiratory polygraphy, biological markers, spirometry, and multi-flow eNO measurements. Data analysis implied linear correlation, non-parametric ANOVA, and pair-wise comparison.Results: No significant difference could be found among 3 OSA severity subgroups for FENO at &ndash; four sampling flow rates (50&ndash; 350 mL/s). The bronchial production rate of NO (J&rsquo;awNO) was proportionally increased, with median values of 11.2, 33.9, and 36.2 in mild, moderate, and severe OSA, respectively (p=0.010). The alveolar concentration of NO (CANO) changed with a non-linear pattern; it was increased in moderate (6.49) vs mild (7.79) OSA but decreased in severe OSA (5.20, p = 0.015). The only correction that could be established between OSA severity and exhaled nitric oxide markers is through J&rsquo;AWNO (rho=0.25, p=0.02) and CANO (rho= 0.18, p=0.04). There was no significant correlation between FENO measured at three different flow rates and the OSA severity. We also found a weak but significant correlation between FENO 100 and averaged SpO2 (rho = 0.07, p= 0.03).Conclusion: The present study showed that J&rsquo;AWNO, which represents eNO derived from the central airway, is proportionally increased in more severe OSA, while eNO from alveolar space, indicated by CANO, was also associated with OSA severity and relatively lower in the most severe OSA patients. In contrast, stand-alone FENO metrics did not show a clear difference among the three severity subgroups.Keywords: exhaled nitric oxide, FENO, J&rsquo;AWNO, CANO, obstructive sleep apne

    Characterizing the spatial distribution of coral reefs in the South-Central Coast region of Viet Nam using Planetscope imagery

    No full text
    This study aims to understand the spatial distribution of coral reefs in the central region of Viet Nam. We classified live coral cover in Son Tra Peninsula (ST) and Cu Lao Cham Island (CLC) in the South-Central Coast Region of Viet Nam using the Maximum Likelihood Classifier on 3 m Planetscope imagery. Confusion matrices and the accuracy of the classifier were assessed using field data (1,543 and 1,560 photographs in ST and CLC, respectively). The results showed that the reef’s width ranged from 30 to 300 m across the study site, and we were able to detect live coral cover across a depth gradient of 2 to 6 m below the sea surface. The overall accuracies of the classifier (the Kappa coefficient) were 76.78% (0.76) and 78.08% (0.78) for ST and CLC, respectively. We found that 60.25% of coral reefs in ST were unhealthy and the live coral cover was less than 50%, while 25.75% and 11.46% of those in CLC were in good and excellent conditions, respectively. This study demonstrates the feasibility of utilizing Planetscope imagery to monitor shallow coral reefs of small islands at a high spatial resolution of 3 m. The results of this study provide valuable information for coral reef protection and conservation
    corecore