895 research outputs found

    Novel duality in disorder driven local quantum criticality

    Full text link
    We find that competition between random Kondo and random magnetic correlations results in a quantum phase transition from a local Fermi liquid to a spin liquid. The local charge susceptibility turns out to have exactly the same critical exponent as the local spin susceptibility, suggesting novel duality between the Kondo singlet phase and the critical local moment state beyond the Landau-Ginzburg-Wilson symmetry breaking framework. This leads us to propose an enhanced symmetry at the local quantum critical point, described by an O(4) vector for spin and charge. The symmetry enhancement serves mechanism of electron fractionalization in critical impurity dynamics, where such fractionalized excitations are identified with topological excitations

    Shadow process tomography of quantum channels

    Full text link
    Quantum process tomography is a critical capability for building quantum computers, enabling quantum networks, and understanding quantum sensors. Like quantum state tomography, the process tomography of an arbitrary quantum channel requires a number of measurements that scale exponentially in the number of quantum bits affected. However, the recent field of shadow tomography, applied to quantum states, has demonstrated the ability to extract key information about a state with only polynomially many measurements. In this work, we apply the concepts of shadow state tomography to the challenge of characterizing quantum processes. We make use of the Choi isomorphism to directly apply rigorous bounds from shadow state tomography to shadow process tomography, and we find additional bounds on the number of measurements that are unique to process tomography. Our results, which include algorithms for implementing shadow process tomography enable new techniques including evaluation of channel concatenation and the application of channels to shadows of quantum states. This provides a dramatic improvement for understanding large-scale quantum systems.Comment: 12 pages, 5 figures; Added citation to similar work; Errors corrected. Previous statements of main result first missed and then miscalculated an exponential cost in system size; Version accepted for publicatio

    Analyses spectroscopiques du liquide céphalo-rachidien de rat en ex vivo et du noyau du raphé dorsal in vivo

    Get PDF
    Les propriétés d'absorption et de fluorescence du liquide céphalo-rachidien (LCR) ponctionné au niveau de la cisterna magna du rat, sont analysées puis comparées à l'émission mesurée in situ dans le noyau du raphe dorsal du rat libre de tous mouvements. Les mesures de fluorescence en ex vivo du LCR et in vivo du noyau raphé dorsal, ont été réalisées par la mise en œuvre d'un microcapteur à fibre optique (FOCS). La fluorescence mesurée in vivo sous excitation à 337 nm, présente 2 pics d'émission situés vers 410 et 460 nm. Les spectres d'absorption, d'émission en fluorescence statique et en fluorescence induite par laser sont rapportés. Avec des domaines de longueur d'onde d'excitation de 300-315 nm, 320-355 nm et 360-470 nm, les spectres d'émission du LCR en ex vivo montrent respectivement des pics centrés vers 340 nm, 390 nm et 530 nm. Malgré les limites liées aux différences de localisation anatomique, ces approches ainsi que celles de la littérature permettent de suggérer que le signal de fluorescence mesuré in vivo à 460nm pourrait dépendre pour une grande partie du NADH intracellulaire

    Measuring Arbitrary Physical Properties in Analog Quantum Simulation

    Full text link
    A central challenge in analog quantum simulation is to characterize desirable physical properties of quantum states produced in experiments. However, in conventional approaches, the extraction of arbitrary information requires performing measurements in many different bases, which necessitates a high level of control that present-day quantum devices may not have. Here, we propose and analyze a scalable protocol that leverages the ergodic nature of generic quantum dynamics, enabling the efficient extraction of many physical properties. The protocol does not require sophisticated controls and can be generically implemented in analog quantum simulation platforms today. Our protocol involves introducing ancillary degrees of freedom in a predetermined state to a system of interest, quenching the joint system under Hamiltonian dynamics native to the particular experimental platform, and then measuring globally in a single, fixed basis. We show that arbitrary information of the original quantum state is contained within such measurement data, and can be extracted using a classical data-processing procedure. We numerically demonstrate our approach with a number of examples, including the measurements of entanglement entropy, many-body Chern number, and various superconducting orders in systems of neutral atom arrays, bosonic and fermionic particles on optical lattices, respectively, only assuming existing technological capabilities. Our protocol excitingly promises to overcome limited controllability and, thus, enhance the versatility and utility of near-term quantum technologies
    • …
    corecore