1,455 research outputs found

    Fuzzy control system for a remote focusing microscope

    Get PDF
    Space Station Crew Health Care System procedures require the use of an on-board microscope whose slide images will be transmitted for analysis by ground-based microbiologists. Focusing of microscope slides is low on the list of crew priorities, so NASA is investigating the option of telerobotic focusing controlled by the microbiologist on the ground, using continuous video feedback. However, even at Space Station distances, the transmission time lag may disrupt the focusing process, severely limiting the number of slides that can be analyzed within a given bandwidth allocation. Substantial time could be saved if on-board automation could pre-focus each slide before transmission. The authors demonstrate the feasibility of on-board automatic focusing using a fuzzy logic ruled-based system to bring the slide image into focus. The original prototype system was produced in under two months and at low cost. Slide images are captured by a video camera, then digitized by gray-scale value. A software function calculates an index of 'sharpness' based on gray-scale contrasts. The fuzzy logic rule-based system uses feedback to set the microscope's focusing control in an attempt to maximize sharpness. The systems as currently implemented performs satisfactorily in focusing a variety of slide types at magnification levels ranging from 10 to 1000x. Although feasibility has been demonstrated, the system's performance and usability could be improved substantially in four ways: by upgrading the quality and resolution of the video imaging system (including the use of full color); by empirically defining and calibrating the index of image sharpness; by letting the overall focusing strategy vary depending on user-specified parameters; and by fine-tuning the fuzzy rules, set definitions, and procedures used

    Polarization properties of specular and dense multipath components in a large industrial hall

    Get PDF
    This paper presents a comprehensive analysis of the polarization characteristics of specular and dense multipath components (SMC and DMC) in a large industrial hall based on frequency-domain channel sounding experiments at 1.3 GHz with 22-MHz bandwidth. Twenty-nine positions were measured under line-of-sight (LOS) and obstructed LOS (OLOS) scenarios. The RiMAX maximum-likelihood estimator is used to extract the full-polarimetric SMC and DMC from the measurement data by taking into account the polarimetric radiating patterns of the dual-polarized antennas. Cross-polar discrimination (XPD) and copolar ratio (CPR) values are presented from the measured and de-embedded channels, as well as the polarimetric delay and angular spread distributions. Strong de-embedded SMC depolarization is obtained for the horizontal polarization in OLOS scenarios. Additionally, DMC depolarization is observed to be weaker than previously reported for indoor environments but constant across LOS/OLOS, polarization, and distance. The results also show that the copolar (cross-polar) DMC power to total channel power ratio is equal to 15% (40%) for LOS and 40% (60%) for OLOS and that this ratio does not correlate significantly with transmitter-receiver distance. Finally, the validity of the room electromagnetics theory was confirmed for transmitter-receiver distances larger than 15 m with no significant difference between polarized subchannels

    Characterization of Antigen-Presenting Cell Subsets in Human Liver-Draining Lymph Nodes

    Get PDF
    T-cell immunity in the liver is tightly regulated to prevent chronic liver inflammation in response to antigens and toxins derived from food and intestinal bacterial flora. Since the main sites of T cell activation in response to foreign components entering solid tissues are the draining lymph nodes (LN), we aimed to study whether Antigen-Presenting Cell (APC) subsets in human liver lymph-draining LN show features that may contribute to the immunologically tolerant liver environment. Healthy liver LN, iliac LN, spleen and liver perfusates were obtained from multi-organ donors, while diseased liver LN were collected from explanted patient livers. Inguinal LN were obtained from kidney transplant recipients. Mononuclear cells were isolated from fresh tissues, and immunophenotypic and functional characteristics of APC subsets were studied using flowcytometry and in ex vivo cultures. Healthy liver-draining LN contained significantly lower relative numbers of CD1c+ conventional dendritic cells (cDC2), plasmacytoid DC (PDC), and CD14+CD163+DC-SIGN+ macrophages (MF) compared to inguinal LN. Compared to spleen, both types of LN contained low relative numbers of CD141hi cDC1. Both cDC subsets in liver LN showed a more activated/mature immunophenotype than those in inguinal LN, iliacal LN, spleen and liver tissue. Despite their more mature status, cDC2 isolated from hepatic LN displayed similar cytokine production capacity (IL-10, IL-12, and IL-6) and allogeneic T cell stimulatory capacity as their counterparts from spleen. Liver LN from patients with inflammatory liver diseases showed a further reduction of cDC1, but had increased relative numbers of PDC and MF. In steady state conditions human liver LN contain relatively low numbers of cDC2, PDC, and macrophages, and relative numbers of cDC1 in liver LN decline during liver inflammation. The paucity of cDC in liver LN may contribute to immune tolerance in the liver environment

    Impact of the spotted microarray preprocessing method on fold-change compression and variance stability

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The standard approach for preprocessing spotted microarray data is to subtract the local background intensity from the spot foreground intensity, to perform a log2 transformation and to normalize the data with a global median or a lowess normalization. Although well motivated, standard approaches for background correction and for transformation have been widely criticized because they produce high variance at low intensities. Whereas various alternatives to the standard background correction methods and to log2 transformation were proposed, impacts of both successive preprocessing steps were not compared in an objective way.</p> <p>Results</p> <p>In this study, we assessed the impact of eight preprocessing methods combining four background correction methods and two transformations (the log2 and the glog), by using data from the MAQC study. The current results indicate that most preprocessing methods produce fold-change compression at low intensities. Fold-change compression was minimized using the Standard and the Edwards background correction methods coupled with a log2 transformation. The drawback of both methods is a high variance at low intensities which consequently produced poor estimations of the p-values. On the other hand, effective stabilization of the variance as well as better estimations of the p-values were observed after the glog transformation.</p> <p>Conclusion</p> <p>As both fold-change magnitudes and p-values are important in the context of microarray class comparison studies, we therefore recommend to combine the Edwards correction with a hybrid transformation method that uses the log2 transformation to estimate fold-change magnitudes and the glog transformation to estimate p-values.</p

    Multiplexed identification, quantification and genotyping of infectious agents using a semiconductor biochip

    Get PDF
    The emergence of pathogens resistant to existing antimicrobial drugs is a growing worldwide health crisis that threatens a return to the pre-antibiotic era. To decrease the overuse of antibiotics, molecular diagnostics systems are needed that can rapidly identify pathogens in a clinical sample and determine the presence of mutations that confer drug resistance at the point of care. We developed a fully integrated, miniaturized semiconductor biochip and closed-tube detection chemistry that performs multiplex nucleic acid amplification and sequence analysis. The approach had a high dynamic range of quantification of microbial load and was able to perform comprehensive mutation analysis on up to 1,000 sequences or strands simultaneously in <2 h. We detected and quantified multiple DNA and RNA respiratory viruses in clinical samples with complete concordance to a commercially available test. We also identified 54 drug-resistance-associated mutations that were present in six genes of Mycobacterium tuberculosis, all of which were confirmed by next-generation sequencing

    Multiplexed identification, quantification and genotyping of infectious agents using a semiconductor biochip

    Get PDF
    The emergence of pathogens resistant to existing antimicrobial drugs is a growing worldwide health crisis that threatens a return to the pre-antibiotic era. To decrease the overuse of antibiotics, molecular diagnostics systems are needed that can rapidly identify pathogens in a clinical sample and determine the presence of mutations that confer drug resistance at the point of care. We developed a fully integrated, miniaturized semiconductor biochip and closed-tube detection chemistry that performs multiplex nucleic acid amplification and sequence analysis. The approach had a high dynamic range of quantification of microbial load and was able to perform comprehensive mutation analysis on up to 1,000 sequences or strands simultaneously in <2 h. We detected and quantified multiple DNA and RNA respiratory viruses in clinical samples with complete concordance to a commercially available test. We also identified 54 drug-resistance-associated mutations that were present in six genes of Mycobacterium tuberculosis, all of which were confirmed by next-generation sequencing

    The Psychological Science Accelerator's COVID-19 rapid-response dataset

    Get PDF
    corecore