8,702 research outputs found
Charge-ordered ferromagnetic phase in manganites
A mechanism for charge-ordered ferromagnetic phase in manganites is proposed.
The mechanism is based on the double exchange in the presence of diagonal
disorder. It is modeled by a combination of the Ising double-exchange and the
Falicov-Kimball model. Within the dynamical mean-field theory the charge and
spin correlation function are explicitely calculated. It is shown that the
system exhibits two successive phase transitions. The first one is the
ferromagnetic phase transition, and the second one is a charge ordering. As a
result a charge-ordered ferromagnetic phase is stabilized at low temperature.Comment: To appear in Phys. Rev.
Resource Competition on Integral Polymatroids
We study competitive resource allocation problems in which players distribute
their demands integrally on a set of resources subject to player-specific
submodular capacity constraints. Each player has to pay for each unit of demand
a cost that is a nondecreasing and convex function of the total allocation of
that resource. This general model of resource allocation generalizes both
singleton congestion games with integer-splittable demands and matroid
congestion games with player-specific costs. As our main result, we show that
in such general resource allocation problems a pure Nash equilibrium is
guaranteed to exist by giving a pseudo-polynomial algorithm computing a pure
Nash equilibrium.Comment: 17 page
Seasonal variation of phytoplankton in My Thanh River, Mekong delta, Vietnam
A study on the seasonal variation of phytoplankton composition was conducted at the upper, middle, and lower parts of the My Thanh River, which supplies an important source of water for aquaculture. Qualitative and quantitative samples of phytoplankton were collected monthly at both high and low tide. The results showed that a total of 171 phytoplankton (algae) species were recorded, belonging to 59 genera and 5 phyla. Diatoms were the most abundant group with the highest species number, followed by green algae. The other phyla possessed a lower number of species. The species composition was more diverse in the rainy season and at high tide at most of the sampling sites. The mean density of algae varied from 30,900-43,521 ind.L^-1^. The density of diatoms was higher in the middle and lower parts. At the same time, euglenoids displayed the highest density in the upper part, showing a difference in the dominant algae group under the influence of salinity. Salinity was found to be significantly positively correlated (p<0.01) with diatoms, whereas it was negatively correlated (p<0.05) with blue-green algae and euglenoids. The algae composition was quite diverse, with the H' index ranging from 2.0-3.3, showing the water quality was slightly to moderately polluted
Conceptual design of the DEMO neutral beam injectors: Main developments and R&D achievements
The objectives of the nuclear fusion power plant DEMO, to be built after the ITER experimental reactor, are usually understood to lie somewhere between those of ITER and a 'first of a kind' commercial plant. Hence, in DEMO the issues related to efficiency and RAMI (reliability, availability, maintainability and inspectability) are among the most important drivers for the design, as the cost of the electricity produced by this power plant will strongly depend on these aspects. In the framework of the EUROfusion Work Package Heating and Current Drive within the Power Plant Physics and Development activities, a conceptual design of the neutral beam injector (NBI) for the DEMO fusion reactor has been developed by Consorzio RFX in collaboration with other European research institutes. In order to improve efficiency and RAMI aspects, several innovative solutions have been introduced in comparison to the ITER NBI, mainly regarding the beam source, neutralizer and vacuum pumping systems
Quantum kinetics and thermalization in a particle bath model
We study the dynamics of relaxation and thermalization in an exactly solvable
model of a particle interacting with a harmonic oscillator bath. Our goal is to
understand the effects of non-Markovian processes on the relaxational dynamics
and to compare the exact evolution of the distribution function with
approximate Markovian and Non-Markovian quantum kinetics. There are two
different cases that are studied in detail: i) a quasiparticle (resonance) when
the renormalized frequency of the particle is above the frequency threshold of
the bath and ii) a stable renormalized `particle' state below this threshold.
The time evolution of the occupation number for the particle is evaluated
exactly using different approaches that yield to complementary insights. The
exact solution allows us to investigate the concept of the formation time of a
quasiparticle and to study the difference between the relaxation of the
distribution of bare particles and that of quasiparticles. We derive a
non-Markovian quantum kinetic equation which resums the perturbative series and
includes off-shell effects. A Markovian approximation that includes off-shell
contributions and the usual Boltzmann equation (energy conserving) are obtained
from the quantum kinetic equation in the limit of wide separation of time
scales upon different coarse-graining assumptions. The relaxational dynamics
predicted by the non-Markovian, Markovian and Boltzmann approximations are
compared to the exact result. The Boltzmann approach is seen to fail in the
case of wide resonances and when threshold and renormalization effects are
important.Comment: 39 pages, RevTex, 14 figures (13 eps figures
Bridging topological and functional information in protein interaction networks by short loops profiling
Protein-protein interaction networks (PPINs) have been employed to identify potential novel interconnections between proteins as well as crucial cellular functions. In this study we identify fundamental principles of PPIN topologies by analysing network motifs of short loops, which are small cyclic interactions of between 3 and 6 proteins. We compared 30 PPINs with corresponding randomised null models and examined the occurrence of common biological functions in loops extracted from a cross-validated high-confidence dataset of 622 human protein complexes. We demonstrate that loops are an intrinsic feature of PPINs and that specific cell functions are predominantly performed by loops of different lengths. Topologically, we find that loops are strongly related to the accuracy of PPINs and define a core of interactions with high resilience. The identification of this core and the analysis of loop composition are promising tools to assess PPIN quality and to uncover possible biases from experimental detection methods. More than 96% of loops share at least one biological function, with enrichment of cellular functions related to mRNA metabolic processing and the cell cycle. Our analyses suggest that these motifs can be used in the design of targeted experiments for functional phenotype detection.This research was supported by the Biotechnology and Biological Sciences Research Council (BB/H018409/1 to AP, ACCC and FF, and BB/J016284/1 to NSBT) and by the Leukaemia & Lymphoma Research (to NSBT and FF). SSC is funded by a Leukaemia & Lymphoma Research Gordon Piller PhD Studentship
DNA Nucleobase Synthesis at Titan Atmosphere Analog by Soft X-rays
Titan, the largest satellite of Saturn, has an atmosphere chiefly made up of
N2 and CH4 and includes traces of many simple organic compounds. This
atmosphere also partly consists of haze and aerosol particles which during the
last 4.5 gigayears have been processed by electric discharges, ions, and
ionizing photons, being slowly deposited over the Titan surface. In this work,
we investigate the possible effects produced by soft X-rays (and secondary
electrons) on Titan aerosol analogs in an attempt to simulate some prebiotic
photochemistry. The experiments have been performed inside a high vacuum
chamber coupled to the soft X-ray spectroscopy beamline at the Brazilian
Synchrotron Light Source, Campinas, Brazil. In-situ sample analyses were
performed by a Fourier transform infrared spectrometer. The infrared spectra
have presented several organic molecules, including nitriles and aromatic CN
compounds. After the irradiation, the brownish-orange organic residue (tholin)
was analyzed ex-situ by gas chromatographic (GC/MS) and nuclear magnetic
resonance (1H NMR) techniques, revealing the presence of adenine (C5H5N5), one
of the constituents of the DNA molecule. This confirms previous results which
showed that the organic chemistry on the Titan surface can be very complex and
extremely rich in prebiotic compounds. Molecules like these on the early Earth
have found a place to allow life (as we know) to flourish.Comment: To appear in Journal of Physical Chemistry A.; Number of pages: 6;
Number of Figures: 5; Number of Tables: 1; Number of references:49; Full
paper at http://pubs.acs.org/doi/abs/10.1021/jp902824
Growth and renal function dynamics of renal oncocytomas on active surveillance
OBJECTIVES:
To study the natural history of renal oncocytomas and address indications for intervention by determining how growth is associated with renal function over time, the reasons for surgery and ablation, and disease-specific survival.
PATIENTS AND METHODS:
The study was conducted in a retrospective cohort of consecutive patients with renal oncocytoma on active surveillance reviewed at the Specialist Centre for Kidney Cancer at the Royal Free London NHS Foundation Trust (2012 to 2019). Comparison between groups was performed using Mann–Whitney U-tests and chi-squared tests. A mixed-effects model with a random intercept for patient was used to study the longitudinal association between tumour size and estimated glomerular filtration rate (eGFR).
RESULTS:
Longitudinal data from 98 patients with 101 lesions were analysed. Most patients were men (68.3%) and the median (interquartile range [IQR]) age was 69 (13) years. The median (IQR) follow-up was 29 (26) months. Most lesions were small renal masses, and 24% measured over 4 cm. Over half (64.4%) grew at a median (IQR) rate of 2 (4) mm per year. No association was observed between tumour size and eGFR over time (P = 0.871). Nine lesions (8.9%) were subsequently treated. Two deaths were reported, neither were related to the diagnosis of renal oncocytoma.
CONCLUSION:
Natural history data from the largest active surveillance cohort of renal oncocytomas to date show that renal function does not seem to be negatively impacted by growing oncocytomas, and confirms clinical outcomes are excellent after a median follow-up of over 2 years. Active surveillance should be considered the 'gold standard' management of renal oncocytomas up to 7cm
Center-of-Mass Properties of the Exciton in Quantum Wells
We present high-quality numerical calculations of the exciton center-of-mass
dispersion for GaAs/AlGaAs quantum wells of widths in the range 2-20 nm. The
k.p-coupling of the heavy- and light-hole bands is fully taken into account. An
optimized center-of-mass transformation enhances numerical convergence. We
derive an easy-to-use semi-analytical expression for the exciton groundstate
mass from an ansatz for the exciton wavefunction at finite momentum. It is
checked against the numerical results and found to give very good results. We
also show multiband calculations of the exciton groundstate dispersion using a
finite-differences scheme in real space, which can be applied to rather general
heterostructures.Comment: 19 pages, 12 figures included, to be published in Phys. Rev.
Self-trapping and stable localized modes in nonlinear photonic crystals
We predict the existence of stable nonlinear localized modes near the band
edge of a two-dimensional reduced-symmetry photonic crystal with a Kerr
nonlinearity. Employing the technique based on the Green function, we reveal a
physical mechanism of the mode stabilization associated with the effective
nonlinear dispersion and long-range interaction in the photonic crystals.Comment: 4 pages (RevTex) with 5 figures (EPS
- …