4,058 research outputs found

    Periplasmic Phosphorylation of Lipid a Is Linked to the Synthesis of Undecaprenyl Phosphate

    Get PDF
    One-third of the lipid A found in the Escherichia coli outer membrane contains an unsubstituted diphosphate unit at position 1 (lipid A 1-diphosphate). We now report an inner membrane enzyme, LpxT (YeiU), which specifically transfers a phosphate group to lipid A, forming the 1-diphosphate species. 32P-labelled lipid A obtained from lpxT mutants do not produce lipid A 1-diphosphate. In vitro assays with Kdo2-[4′- 32P]lipid A as the acceptor shows that LpxT uses undecaprenyl pyrophosphate as the substrate donor. Inhibition of lipid A 1-diphosphate formation in wild-type bacteria was demonstrated by sequestering undecaprenyl pyrophosphate with the cyclic polypeptide antibiotic bacitracin, providing evidence that undecaprenyl pyrophosphate serves as the donor substrate within whole bacteria. LpxT-catalysed phosphorylation is dependent upon transport of lipid A across the inner membrane by MsbA, a lipid A flippase, indicating a periplasmic active site. In conclusion, we demonstrate a novel pathway in the periplasmic modification of lipid A that is directly linked to the synthesis of undecaprenyl phosphate, an essential carrier lipid required for the synthesis of various bacterial polymers, such as peptidoglycan

    Numerical simulation of discharge plasma generation and nitriding the metals and alloys

    Get PDF
    This research provides the numerical simulation of the plasma generation in a hollow cathode as well as the diffusion of nitrogen atoms into the metal in the low-pressure glow discharge plasma. The characteristics of the gas discharge were obtained and the relation of the basic technological parameters and the structural and phase state of the nitrided material were defined. Authors provided the comparison of calculations with the experimental results of titanium nitriding by low-pressure glow discharge plasma in a hollow cathode

    Drug-Related Problems in Coronary Artery Diseases

    Get PDF
    Coronary artery disease (CAD) remains the leading cause of mortality among cardiovascular diseases, responsible for 16% of the world’s total deaths. According to a statistical report published in 2020, the global prevalence of CAD was estimated at 1655 per 100,000 people and is predicted to exceed 1845 by 2030. Annually, in the United States, CAD accounts for approximately 610,000 deaths and costs more than 200 billion dollars for healthcare services. Most patients with CAD need to be treated over long periods with a combination of drugs. Therefore, the inappropriate use of drugs, or drug-related problems (DRPs), can lead to many consequences that affect these patients’ health, including decreased quality of life, increased hospitalization rates, prolonged hospital stays, increased overall health care costs, and even increased risk of morbidity and mortality. DRPs are common in CAD patients, with a prevalence of over 60%. DRPs must therefore be noticed and recognized by healthcare professionals. This chapter describes common types and determinants of DRPs in CAD patients and recommends interventions to limit their prevalence

    Logging intensity drives variability in carbon stocks in lowland forests in Vietnam

    Get PDF
    Forest degradation in the tropics is generating large carbon (C) emissions. In tropical Asia, logging is the main driver of forest degradation. For effective implementation of REDD+ projects in logged forests in Southeast Asia, the impacts of logging on forest C stocks need to be assessed. Here, we assess C stocks in logged lowland forests in central Vietnam and explore correlations between logging intensity, soil, topography and living aboveground carbon (AGC) stocks. We present an approach to estimate historical logging intensities for the prevalent situation when complete records on logging history are unavailable. Landsat analysis and participatory mapping were used to quantify the density of historical disturbances, used as a proxy of logging intensities in the area. Carbon in AGC, dead wood, belowground carbon (BGC) and soil (SOC) was measured in twenty-four 0.25 ha plots that vary in logging intensity, and data on recent logging, soil properties, elevation and slope were also collected. Heavily logged forests stored only half the amount of AGC of stems ≥10 cm dbh as lightly logged forests, mainly due to a reduction in the number of large (≥60 cm dbh) trees. Carbon in AGC of small trees (5–10 cm dbh), dead wood and BGC comprised only small fractions of total C stocks, while SOC in the topsoil of 0–30 cm depth stored ~50% of total C stocks. Combining logging intensities with soil and topographic data showed that logging intensity was the main factor explaining the variability in AGC. Our research shows large reductions in AGC in medium and heavily logged forests. It highlights the critical importance of conserving big trees to maintain high forest C stocks and accounting for SOC in total C stock estimates

    Study of the Isomeric Ratio of 135m,g 54Xe in Photofission 23793Np in Giant Dipole Resonance Region

    Get PDF
    In this work we present the results of measurement of the isomeric ratio of fission fragment e in photofission of 237Np induced by bremsstrahlung in the Giant Dipole Resonance Region by the method using the inert gaseous flow. The experiments have been performed at the electron accelerator Microtron MT-25 of the Flerov laboratory of Nuclear Reaction, Joint Institute for Nuclear Research, Dubna, Russia. The results were discussed and compared with that of other authors

    TextANIMAR: Text-based 3D Animal Fine-Grained Retrieval

    Full text link
    3D object retrieval is an important yet challenging task, which has drawn more and more attention in recent years. While existing approaches have made strides in addressing this issue, they are often limited to restricted settings such as image and sketch queries, which are often unfriendly interactions for common users. In order to overcome these limitations, this paper presents a novel SHREC challenge track focusing on text-based fine-grained retrieval of 3D animal models. Unlike previous SHREC challenge tracks, the proposed task is considerably more challenging, requiring participants to develop innovative approaches to tackle the problem of text-based retrieval. Despite the increased difficulty, we believe that this task has the potential to drive useful applications in practice and facilitate more intuitive interactions with 3D objects. Five groups participated in our competition, submitting a total of 114 runs. While the results obtained in our competition are satisfactory, we note that the challenges presented by this task are far from being fully solved. As such, we provide insights into potential areas for future research and improvements. We believe that we can help push the boundaries of 3D object retrieval and facilitate more user-friendly interactions via vision-language technologies.Comment: arXiv admin note: text overlap with arXiv:2304.0573

    Polypyrrole-Fe2O3 nanohybrid materials for electrochemical storage

    Get PDF
    We report on the synthesis and electrochemical characterization of nanohybrid polypyrrole (PPy) (PPy/Fe2O3) materials for electrochemical storage applications. We have shown that the incorporation of nanoparticles inside the PPy notably increases the charge storage capability in comparison to the “pure” conducting polymer. Incorporation of large anions, i.e., paratoluenesulfonate, allows a further improvement in the capacity. These charge storage modifications have been attributed to the morphology of the composite in which the particle sizes and the specific surface area are modified with the incorporation of nanoparticles. High capacity and stability have been obtained in PC/NEt4BF4 (at 20 mV/s), i.e., 47 mAh/g, with only a 3% charge loss after one thousand cyles. The kinetics of charge–discharge is also improved by the hybrid nanocomposite morphology modifications, which increase the rate of insertion–expulsion of counter anions in the bulk of the film. A room temperature ionic liquid such as imidazolium trifluoromethanesulfonimide seems to be a promising electrolyte because it further increases the capacity up to 53 mAh/g with a high stability during charge–discharge processes

    Mapping for engagement: setting up a community based participatory research project to reach underserved communities at risk for Hepatitis C in Ho Chi Minh City, Vietnam

    Get PDF
    Background: Approximately 1. 07 million people in Vietnam are infected with hepatitis C virus (HCV). To address this epidemic, the South East Asian Research Collaborative in Hepatitis (SEARCH) launched a 600-patient cohort study and two clinical trials, both investigating shortened treatment strategies for chronic HCV infection with direct-acting antiviral drugs. We conducted ethnographic research with a subset of trial participants and found that the majority were aware of HCV infection and its implications and were motivated to seek treatment. However, people who inject drugs (PWID), and other groups at risk for HCV were under-represented, although injecting drug use is associated with high rates of HCV. Material and Methods: We designed a community-based participatory research (CBPR) study to engage in dialogues surrounding HCV and other community-prioritized health issues with underserved groups at risk for HCV in Ho Chi Minh City. The project consists of three phases: situation analysis, CBPR implementation, and dissemination. In this paper, we describe the results of the first phase (i.e., the situation analysis) in which we conducted desk research and organized stakeholder mapping meetings with representatives from local non-government and community-based organizations where we used participatory research methods to identify and analyze key stakeholders working with underserved populations. Results: Twenty six institutions or groups working with the key underserved populations were identified. Insights about the challenges and dynamics of underserved communities were also gathered. Two working groups made up of representatives from the NGO and CBO level were formed. Discussion: Using the information provided by local key stakeholders to shape the project has helped us to build solid relationships, give the groups a sense of ownership from the early stages, and made the project more context specific. These steps are not only important preliminary steps for participatory studies but also for other research that takes place within the communities

    Dynamical Mean-Field Theory

    Full text link
    The dynamical mean-field theory (DMFT) is a widely applicable approximation scheme for the investigation of correlated quantum many-particle systems on a lattice, e.g., electrons in solids and cold atoms in optical lattices. In particular, the combination of the DMFT with conventional methods for the calculation of electronic band structures has led to a powerful numerical approach which allows one to explore the properties of correlated materials. In this introductory article we discuss the foundations of the DMFT, derive the underlying self-consistency equations, and present several applications which have provided important insights into the properties of correlated matter.Comment: Chapter in "Theoretical Methods for Strongly Correlated Systems", edited by A. Avella and F. Mancini, Springer (2011), 31 pages, 5 figure

    Turbulence and galactic structure

    Full text link
    Interstellar turbulence is driven over a wide range of scales by processes including spiral arm instabilities and supernovae, and it affects the rate and morphology of star formation, energy dissipation, and angular momentum transfer in galaxy disks. Star formation is initiated on large scales by gravitational instabilities which control the overall rate through the long dynamical time corresponding to the average ISM density. Stars form at much higher densities than average, however, and at much faster rates locally, so the slow average rate arises because the fraction of the gas mass that forms stars at any one time is low, ~10^{-4}. This low fraction is determined by turbulence compression, and is apparently independent of specific cloud formation processes which all operate at lower densities. Turbulence compression also accounts for the formation of most stars in clusters, along with the cluster mass spectrum, and it gives a hierarchical distribution to the positions of these clusters and to star-forming regions in general. Turbulent motions appear to be very fast in irregular galaxies at high redshift, possibly having speeds equal to several tenths of the rotation speed in view of the morphology of chain galaxies and their face-on counterparts. The origin of this turbulence is not evident, but some of it could come from accretion onto the disk. Such high turbulence could help drive an early epoch of gas inflow through viscous torques in galaxies where spiral arms and bars are weak. Such evolution may lead to bulge or bar formation, or to bar re-formation if a previous bar dissolved. We show evidence that the bar fraction is about constant with redshift out to z~1, and model the formation and destruction rates of bars required to achieve this constancy.Comment: in: Penetrating Bars through Masks of Cosmic Dust: The Hubble Tuning Fork strikes a New Note, Eds., K. Freeman, D. Block, I. Puerari, R. Groess, Dordrecht: Kluwer, in press (presented at a conference in South Africa, June 7-12, 2004). 19 pgs, 5 figure
    corecore