97 research outputs found

    Inclusion Classrooms as it Relates to Self-Esteem, Behavior, and Social Skills

    Get PDF
    According to the National Center for Education Statistics (NCES), in the 2007-2008 school year, 13.4% of public education students were enrolled in some sort of program under the Individuals with Disabilities Act of 2004, or IDEA (NCES, 2011). It is imperative to all students that they are placed in the classroom that best promotes academic success, good self-esteem, desired behavior and social skills. This qualitative study uses previously published literature to explore inclusion classrooms and its common practices as it relates to students’ self-esteem, behavior, and social skills. Inclusion classrooms serve the general student body as well as Exceptional Student Education students. Three studies were examined and it was found that students involved in inclusion classrooms have a positive relationship on self-esteem, behavior, and social skills

    Reconfigurable Reflectarray Antennas with Bandwidth Enhancement for High Gain, Beam-Steering Applications

    Get PDF
    Reconfigurable reflectarrays are a class of antennas that combine the advantages of traditional parabolic antennas and phased array antennas. Chapter 1 discusses the basic operational theory of reflectarrays and their design. A review of previous research and the current status is also presented. Furthermore the inherent advantages and disadvantages of the reflectarray topography are presented. In chapter 2, a BST-integrated reflectarray operating at Ka band is presented. Due to the monolithic integration of the tuning element, this design is then extended to V band where a novel interdigital gap configuration is utilized. Finally to overcome loss and phase limitations of the single resonant design, a BST-integrated, dual-resonance unit cell operating at Ka band is designed. While the losses are still high, a 360° phase range is demonstrated. In chapter 3, the operational theory of dual-resonant array elements is introduced utilizing Q theory. An equivalent circuit is developed and used to demonstrate design tradeoffs. Using this theory the design procedure of a varactor tuned dual-resonant unit cell operating at X-band is presented. Detailed analysis of the design is performed by full-wave simulations and verified via measurements. In chapter 4, the array performance of the dual-resonance unit cell is analyzed. The effects of varying angles of incidence on the array element are studied using Floquet simulations. The beam scanning, cross-polarization and bandwidth performance of a 7 x 7 element reflectarray is analyzed using full-wave simulations and verified via measurements. In chapter 5 a loss analysis of the dual-resonant reflectarray element is performed. Major sources of loss are identified utilizing full-wave simulations before an equivalent circuit is utilized to optimize the loss performance while maintaining a full phase range and improved bandwidth performance. Finally the dual-resonance unit cell is modified to support two linear polarizations. Overall, the operational and design theory of dual resonant reflectarray unit cells using Q theory is developed. A valuable equivalent circuit is developed and used to aid in array element design as well as optimize the loss and bandwidth performance. The proposed theoretical models provide valuable physical insight through the use of Q theory to greatly aid in reflectarray design

    Acoustic cell concentration, washing & perfusion for cellular therapy manufacturing

    Get PDF
    A major wave of promising cellular therapies is progressing through clinical trials, such that engineers and scientists need to address the challenges of economically ensuring the manufacture of safe and efficacious cell therapy products. These processes often depend on devices and methods that were developed for only related blood cell processing or vaccine manufacturing. Thus, we are in a window of opportunity to tailor innovative technologies to address the emerging specialized needs of cell therapy manufacturing. Concentrating and washing cells between stages is a repeated bioprocess unit operation, such as to transfer cells from culture medium to cryopreservation medium. Especially for small-scale autologous therapies, cell washing is not well performed by closed-system centrifuges or filters, including due to the loss of potentially lifesaving cells. We previously developed an acoustic cell separation device that has been widely used for 20 years as part of mammalian cell perfusion bioreactors. This non-fouling filter technology uses gentle ultrasonic standing wave forces to separate cells from medium based on density and compressibility differences. We have now adapted this technology to concentrate and then wash cells at high concentrations, so as to reduce the wash volumes by an order of magnitude, thereby reducing the process cost of goods compared to centrifuge washing. The device operation has been optimized to obtain greater than 99.9% washing with 95% washed cell recoveries, such that this acoustic technology could become the method of choice for cell therapy bioprocessing. We also have recently enhanced automated acoustic devices to perfuse over 140 million cell/mL cultures, maintaining \u3e99% cell separation efficiencies. With the simplicity of no physical filter barrier or mechanical moving parts, this tailored technology provides a high performance closed manufacturing device, to perfuse, concentrate and wash cells. The development of robust and economical means of mammalian cell manufacturing is on the critical path to ensuring that promising innovative therapies can become widely available to innumerable patients in dire need

    Management system or cutting system or system of exploitation

    No full text

    Fertilization and cybernetics - soil science and site knowledge

    No full text
    corecore