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ABSTRACT

Reconfigurable reflectarrays are a class of antennas that combine the advantages of traditional

parabolic antennas and phased array antennas. Chapter 1 discusses the basic operational theory

of reflectarrays and their design. A review of previous research and the current status is also

presented. Furthermore the inherent advantages and disadvantages of the reflectarray topography

are presented.

In chapter 2, a BST-integrated reflectarray operating at Ka band is presented. Due to the monolithic

integration of the tuning element, this design is then extended to V band where a novel interdigital

gap configuration is utilized. Finally to overcome loss and phase limitations of the single resonant

design, a BST-integrated, dual-resonance unit cell operating at Ka band is designed. While the

losses are still high, a 360o phase range is demonstrated.

In chapter 3, the operational theory of dual-resonant array elements is introduced utilizing Q the-

ory. An equivalent circuit is developed and used to demonstrate design tradeoffs. Using this theory

the design procedure of a varactor tuned dual-resonant unit cell operating at X-band is presented.

Detailed analysis of the design is performed by full-wave simulations and verified via measure-

ments.

In chapter 4, the array performance of the dual-resonance unit cell is analyzed. The effects of

varying angles of incidence on the array element are studied using Floquet simulations. The beam

scanning, cross-polarization and bandwidth performance of a 7×7 element reflectarray is analyzed

using full-wave simulations and verified via measurements.

In chapter 5 a loss analysis of the dual-resonant reflectarray element is performed. Major sources of

loss are identified utilizing full-wave simulations before an equivalent circuit is utilized to optimize

iii



the loss performance while maintaining a full phase range and improved bandwidth performance.

Finally the dual-resonance unit cell is modified to support two linear polarizations.

Overall, the operational and design theory of dual resonant reflectarray unit cells using Q theory

is developed. A valuable equivalent circuit is developed and used to aid in array element design

as well as optimize the loss and bandwidth performance. The proposed theoretical models provide

valuable physical insight through the use of Q theory to greatly aid in reflectarray design.
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CHAPTER 1: INTRODUCTION

1.1 Motivation

The new standards for 5G communications require very high gain antennas that support beam-

scanning functionality to satiate the need for high data rates and spatial diversity in noisy environ-

ments. Furthermore, these antennas need to be inexpensive to fabricate and deploy for widespread

implementation. The applications for such antennas range from terrestrial base station applications

to extraterrestrial satellite communications [1], [2] and radar [3]. Traditionally, these roles would

be filled by phased arrays [4] and parabolic antennas [5].

Parabolic antennas utilize a shaped metallic reflector to gather an incident plane wave and focus

it into a feed antenna located at the focal point of the reflector. Thus, basic parabolic reflectors

are a relatively low cost wideband, high gain antenna implementation. However, the deployment

of parabolic antennas can be quite difficult especially in satellite applications. Parabolic reflectors

become very bulky as they scale with size due to the specific curvature required to realize a desired

radiation pattern. Additionally, they are incapable of even moderate scan angles using electrically

steered beams [6]. Functional beam-scanning requires the mechanical rotation of the reflector and

feed horn, greatly increasing the complexity of the mounting structure and significantly limiting

the scanning speed.

Phased array antennas are typically planar and easily deployable; they can provide high speed

electronic beam-scanning and beam-shaping. However, phased arrays require phase shifters in the

feeding network or utilize T/R modules to enable this beam-scanning. T/R modules are costly,

power hungry, and generate significant heat while phase shifters introduce high losses [7] and in

the case of discrete phase shifters, quantization phase error [8].
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Reflectarray antennas are viewed as a viable option for highly efficient, high gain, applications re-

quiring beam-scanning due to the unique combination of parabolic and phased array antennas [9]–

[11]. Reflectarrays, like parabolic antennas utilize quasi-optical excitation of an aperture. How-

ever, reflectarray apertures are planar and consist of multiple array elements, each capable of in-

troducing a specific phase shift. The phase shift of each element enables the electronic steering of

the beam without a lossy and costly feed network utilized in phased arrays.

1.2 Fundamentals of Reflectarray Antennas

In this section some history on the development of the reflectarray, their operating theory, and their

key performance parameters will be discussed. Several reflectarray archetypes will be presented

along with their advantages and disadvantages. The practical design principles of reflectarray

apertures and array elements will be discussed and the state of the art technologies and designs

will be presented.

1.2.1 Reflectarray Principles of Operation

The first reflectarray design was proposed by Berry, Malech, and Kennedy in 1963 [12]. The proto-

type utilized shorted waveguide elements of varying lengths. When illuminated by a feed horn, the

energy was coupled into the waveguides and reflected by the shorts, re-radiating the energy with

a phase shift corresponding to the length of the waveguide. However, the waveguides themselves

were bulky and quite heavy, making the design impractical. Research into reflectarrays lulled until

the introduction of microstrip antenna technology [13]. The low weight, low profile, and inexpen-

sive fabrication of microstrip antennas made them ideal for reflectarray design. The first microstrip

reflectarrays used patches of different sizes [14], cross-dipoles, rings of different resonant lengths
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[15], [16], and patches loaded with stubs of varying length [17]. While these examples focused on

linearly polarized designs significant work was also made to design circularly polarized reflectar-

rays. In [18], [19], identical square microstrip patches were individually designed to be circularly

polarized using two stubs of different length. The required reflected phase was achieved by rotating

the patches.

Figure 1.1: Typical Geometry of a printed reflectarray antenna. Re-printed from [20]

A schematic of an offset fed reflectarray is shown in Fig. 1.1. The reflectarray consists of an array

of elements on a dielectric substrate with a ground plane. Each element (m,n) is illuminated by

the offset feed horn which is separated by a distance (dmn). The energy from the feed is coupled

into each element and is then re-radiated with the specific phase shift required to form a plane wave

in a desired direction. From array theory [4], we know that the phase shift required on a given an

array aperture to point the beam to a specific direction (θb, φb) is calculated as 1.1 where (m,n)

are the coordinates of the element and ko is the propagation constant in a vacuum.

ΦR(m,n) = −kosin(θb)cos(φb)m− kosin(θb)sin(φb)n (1.1)

However, in reflectarray design, each element is not fed identically and there is a phase shift be-
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tween each of them that arises from the differential spatial distance of each element from the feed.

The phase of the wave reflected by each element can be written as 1.2 where ΦE(m,n) is the

individual element’s reflected phase.

ΦR(m,n) = −kodmm + ΦE(m,n) (1.2)

Combining 1.1 and 1.2 we can solve for the required element phase ΦE(m,n) as 1.3.

ΦE(m,n) = kod(m,n) + kosin(θb)cos(φb)m− kosin(θb)sin(φb)n (1.3)

From 1.3 it can be seen that it is necessary for each radiating element to have a phase range of 360o

or greater to prevent phase errors across the reflectarray aperture.

1.2.2 Types of Reflectarray Antennas

1.2.2.1 Passive Designs

Passive reflectarrays are not capable of beam-scanning and typically they will have very high ef-

ficiencies, low element loss, and wider bandwidths than reconfigurable designs. Array elements

are designed such that some physical parameter, whether it be the length of a delay line [21] or the

resonant length of a patch [14], can be varied to realize a specific reflection phase. Each element

is designed around this parameter to realize the correct reflected phase from 1.3. Most passive

reflectarray designs have peak element losses significantly less than 0.5 dB and overall efficiencies

greater than 60%.
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1.2.2.2 Reconfigurable Designs

Reconfigurable reflectarrays have garnered significant interest in recent years due to desirability

of electronic beam-scanning. The most common approach to implement reconfigurability is to

introduce an electronic load to the same array elements used in passive designs. By loading the

array element with switched true-time delay (TTD) lines, discrete phase states can be realized [22],

[23]. Alternatively continuously variable loads such as varactors or PIN diodes can be integrated

into resonator-type unit cells [24]–[26]. While these unit cells are capable of quickly adjusting

their phase response thus enabling beam-scanning, the tuning elements introduce significant loss

and the phase range is typically limited to much less than 360o. As such, significant work is

focused on optimizing the loading mechanism and placement of these elements to minimize loss

and maximize phase range.

1.2.2.3 Shaped and Multi-Beam Designs

While most passive and reconfigurable reflectarray designs radiate a single main beam, also known

as a pencil beam, they can also be designed to cover a specific region. Shaped beams can be realized

using phased arrays through the use of array element amplitude and phase contouring. However,

in reflectarray design the magnitude of the reflected wave from each reflectarray element cannot

be actively controlled. Additionally, the loss of each element will vary as the reflected phase is

changed, while the intensity of the incident wave is wholly dependent on the feed horn design and

placement. However, it is still possible to synthesize shaped beams using only the reflected phase.

This method is based on the intersection approach [27]–[29].

Additionally, reflectarrays can also be designed for multi-beam applications with single or multiple

feeds [30]. In [29], a dual-polarization reflectarray was designed with two independent beams with
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orthogonal polarization; this reflectarray was used to replace a conventional reflector in a satellite

application. The H-polarization formed a contour beam for specific European coverage while the

V-polarization formed a pencil beam.

1.3 Reflectarray Design Challenges

1.3.1 Bandwidth Limitations

Reflectarray antennas traditionally have very small bandwidths as compared to parabolic reflec-

tor antennas. Parabolic reflectors are inherently wideband as the phase delay required to focus

the beam is caused by a physical distance between the feed and the reflector. As such, when the

frequency varies, the physical distance compensates for the necessary phase shifts. However, res-

onator based reflectarrays will experience increasing phase errors from each array element as the

frequency varies from the design frequency. TTD array elements and multi-resonant elements have

been used to provide linear phase responses, increasing reflectarray bandwidth performance at the

cost of design and fabrication complexity.

1.3.2 Feed-Image Lobe

The feed-image lobe concept applies to reflectarrays with offset feeds. The issue occurs when

energy incident on the aperture is reflected in the specular direction, as shown in Fig. 1.2. The

issue of the image lobe was presented in [31] and it was hypothesized that the image lobe was due

to scattering from the ground plane; the array elements are spaced widely enough such that there

are large areas where the ground plane is not occluded by an array element. A triangular lattice

was used to maximize the area covered by elements, however only a minimal improvement in the

image lobe was observed [31]. Conversely in [32], [33] it was found that the image lobe was due
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in part to phase errors from specific elements, especially those in the Fresnel zone boundaries. As

will be discussed, the infinite array assumption that is used in most reflectarray designs breaks

down around the Fresnel zone as the phase wraps through 360o.

Figure 1.2: Cross-section of an offset-fed reflectarray showing the incident wave and angle of specular

reflection

1.3.3 Beam Squint in Offset-Fed Reflectarrays

Beam squint describes the phenomenon where a frequency-dependent reduction in gain appears

where the main beam deviates from the desired beam and is observed in offset-fed reflector and

reflectarray antennas alike. The beam squint becomes more pronounced as the frequency deviates

further from the center frequency. A numerical analysis was used in [34] to find the source of beam

squinting in reflectarrays. It was shown that for all frequencies aside from the center frequency,

the aperture phase distribution will have a slope that is different from that which is required to

point the main beam in the desired direction. While a complete solution to beam squint was not

proposed in [34] it was found that it could be reduced by designing the main beam in the specular

direction.
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1.3.4 Sources of Phase Error

The phase response of each reflectarray element is of critical importance to the operation of the

array. As such any sources of phase error should be identified and carefully studied. Fabrication

tolerances will have a direct and obvious effect on the performance of the array. Several resonator

designs, especially those designed to maximize phase range will be more sensitive to fabrication

errors. Another obvious source of error comes from a lack of phase range, single-resonance el-

ements will typically have less than 360o phase range; to avoid this issue true-time delay and

multi-resonant elements can be used. However, if the phase range is less than 360o the array will

inevitably suffer from phase errors.

Another source of phase error comes from angle of incidence assumptions. The angle of incidence

is defined as the angle between the incident wave and the normal direction of the antenna aperture.

In center-fed reflectarrays this angle is 0o at the center of the array and increases for elements closer

to the edge of the array. Using an off-set feed or moving the feed close to the aperture for a smaller

f/D will increase this angle. Typically the reflection phase of a given array element is extracted

via normal incidence approximation and Floquet modes must be used to study these effects [35]

in arrays with significant angles of incidence. Finally, a significant source of error comes from the

use of infinite array approximations when designing and simulating passive reflectarray elements.

Array elements are typically designed under the assumption that the element is in an infinite array

of identical elements. In conventional reflectarrays the required phase changes gradually in each

Fresnel zone. Thus, the variable dimension that is used to control the reflected phase is very similar

between neighboring elements. However, when the zone is complete, the required phase changes

by 360o and the element dimension makes a step change between the maximum and minimum

dimensions which breaks the periodic approximation, resulting in some error in the predicted phase

response.
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1.4 Feed Antenna Design and Aperture Efficiency

Reflectarray design can be broadly broken down into two categories: the design of the array el-

ement and that of the feed horn. The aperture efficiency is dependent on the radiation pattern of

the feed and its position in relation to the aperture [36]. The spillover efficiency is a measure of

the ratio between the energy captured by the aperture and the energy radiated by the feed. As the

feed is moved closer to the aperture or as its gain is increased, the spillover efficiency increases

proportionally. The illumination efficiency is a measure of how evenly excited each element on

the aperture is. As the feed is moved further away from the aperture or as the feed gain is reduced,

the illumination efficiency similarly increases. In general the aperture efficiency is determined by

the directivity of the feed antenna and the ratio of the distance between the aperture (f ) and the

aperture size (D).

Another issue to consider is feed blockage which occurs when the feed horn or positioning struc-

ture obscures or interferes with the reflectarray radiation pattern. A significant issue with relatively

small reflectarrays, feed blockage can be minimized by offsetting the feed at an angle to the nor-

mal vector of the aperture. If the feed horn is offset too far, the aperture efficiency will suffer,

however offset angles up to 30o can be used without significant degradation. Offsetting the feed

also increases the angle of incidence seen by each array element, especially those at the edges of

the array. While some elements are not sensitive to the angle of incidence, special care needs to be

taken to ensure the array performance does not degrade from to unexpected phase errors due to the

offset feed.
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1.5 True-Time Delay Array Elements

The bandwidth of reflectarrays is limited by two key parameters [9]: the bandwidth of the antenna

elements [37] and the differential spatial phase delay from the feed [38]. The bandwidth will not be

limited by the differential spatial distances unless the array is very electrically large [9]. This can be

compensated for by using array elements that utilize true-time delays (TTDs) to provide the phase

delay [21], [39], [40]. In [40], an open-ended transmission line was placed under a microstrip

patch antenna and a slot was cut in the ground plane. The incident wave would couple into the

patch, through the slot, and into the transmission line. The energy would then travel the length

of the transmission line, reflect from the discontinuity in the line, and couple back into the patch

before being re-radiated with a phase shift; the desired phase shift is achieved by varying the length

of the delay line. Due to the fact that the phase shift is caused by a physical delay, the phase shift

has a linear relationship with frequency. This phase shift compensates for the electrical spacing

between the elements at different frequencies. However, this technique significantly increases

the fabrication complexity, and the transmission line adds additional dissipative losses. Another

TTD technique was proposed in [17] using identical patches with variable-length stubs. Like the

aperture coupled design, energy couples from the patch into the stubs and is reflected back to the

patch after a designed delay. However, it was found that the stubs added significant dissipative

losses and degraded the cross-polarization performance. From this discussion it can be seen that

array elements with a smooth and mostly linear phase response will have improved bandwidth

performance. It should also be noted that the coupling of the incident wave into the delay line in

both of these designs has a certain bandwidth. Thus, the bandwidth of elements designed with this

technique is limited.
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1.6 Resonant Array Elements

Reflectarray designs based on the use of a resonant element depend on the fact that the reflected

phase changes about its resonant frequency [41]. Controlling the reflection phase by altering the

resonant dimension was presented in [14], [15]. When the array element is over-coupled, the

phase response exhibits an S-curve. By changing the resonant frequency of the array element,

the reflected phase at the reflectarray operating frequency is varied. Considering the ease of this

technique when compared to the complicated design and fabrication required for aperture coupled

array elements [40], resonant array element designs are very common. These reflectarray elements

typically use passive tuning mechanisms and are commonly used for fixed-beam applications. The

lack of active tuning mechanisms makes the fabrication of these arrays particularly inexpensive.

Several resonant structures have been used to realize functional reflectarray elements including

printed dipoles of variable lengths [15] and microstrip patches of variable lengths [14]. The benefit

of these techniques over the stub and aperture coupled approach is in the reduction of dissipative

losses and reduced cross-polarization levels. However, this approach also limits the phase ranges

achievable and introduce non-linear phase variations about the resonant frequency which limit the

bandwidth performance.

To overcome the bandwidth limitations inherent in reflectarrays, multi-layer structures were pro-

posed in [42], [43]. In both of these designs the unit cell was designed using multiple concentric

resonating elements on bonded substrates. While both of these reflectarrays showed improvements

in the bandwidth, they presented significant drawbacks: the reflectarrays became more bulky, the

design became much more complex due to the strong mutual coupling between the resonators of

each element, and the multi-layer design increased fabrication costs.

To avoid the multi-layer issues demonstrated in [42], [43], another technique was developed in
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which multiple resonating elements are coupled together on the same planar surface. Square and

circular-shape rings were used in [44] while in [45] cross/loop elements with variable loop lengths

were used. [46] demonstrated a significant improvement in the fractional gain bandwidth perfor-

mance through the use of a rectangular ring and square patch design on a single layer.

1.7 Q Factor Analysis Technique

The use of Q factors in the analysis of resonance based reflectarray unit cells was presented in [41].

In this paper a passive reflectarray’s phase slope, phase range, and loss performance is evaluated

through the use of quality factors. It was shown that the ratio of the radiation Q to the parallel

combination of the conductor and dielectric Q factors (Qc//Qd = Qo) will determine the loss and

phase slope of the reflected wave at the resonant frequency of the element. When the radiationQrad

is greater than Qo the phase of the reflected wave around the resonant frequency is discontinuous,

which isn’t useful in passive reflectarray designs, and in general should be avoided in reconfig-

urable designs as well. When Qrad = Qo all of the energy coupled into the unit cell is dissipated

in the unit cell and the loss is infinite. When Qrad < Qo the phase response is continuous about

the resonant frequency and desirable phase shifts are achievable.

Q factor theory not only describes the phase response, it also predicts the loss of a unit cell. The

closer the values of Qrad&Qo become, the greater the loss of the resonance. However, the phase

slope and therefore phase range also increases as these two values become more similar. As such

there is always a trade off between phase range and loss performance.
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1.8 Active Tuning Technologies

In order to enable beam-scanning in reflectarray designs, the reflected phase of each array element

has to be actively tunable. In general, the tuning mechanisms can be broken down into two sig-

nificant categories: discrete and continuous tuning. Discrete tuning technologies typically have

smaller losses than continuously tuned elements, the implementation of the control circuit is sim-

pler, and they are typically more reliable. However, discrete tuning introduces phase quantization

error, especially in single-bit designs. This error reduces reflectarray directivity [23] and increases

side lobe levels [47]. Multi-bit designs can be used to reduce the phase quantization error. How-

ever, they introduce higher losses and complicate the biasing networks. In practice, analog phase

control tends to be less reliable and introduces complications into the control circuit. However,

analog phase control is capable of avoiding phase quantization errors, making reconfigurable ele-

ments with large continuous phase ranges highly desirable.

A multitude of tunable components and techniques to integrate them into microstrip antenna el-

ements have been proposed. Each integration technique and each tuning technology have advan-

tages and disadvantages. In general it is desirable to achieve lower phase-sensitivities with larger

phase ranges while maintaining low losses. Several reflectarray tuning technologies have been

used including RF MEMS [22], [48]–[50], PIN diodes [51], [52], liquid crystal (LC) materials

[24], [53], complex oxide-thin films [54]–[57], graphene [58], micro-fluidically pumped liquids

[59], varactors [25], [26], [60], [61] and micro-motors [62], [63].

1.8.1 Discrete/Digital Tuning Technologies

While MEMS devices can be designed to operate as a RF switch or a variable capacitor, MEMS

capacitors are especially fragile. As such most MEMS devices used in reflectarray design are
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discrete switches. MEMS devices have high Q factors at mm-wave frequencies, making them

attractive for reflectarray applications. Unfortunately, due to the mechanical nature of the tuning

mechanism, the switching speeds are significantly slower than other tuning technologies. In [50]

an aperture in a patch element’s ground plane was loaded with MEMS switches. While multiple

switches were used in order to realize multibit tuning, only 150o phase range was measured. [22]

demonstrated an adaptation of the aperture coupled passive reflectarray design in which MEMS

switches were loaded onto the open-ended transmission line under the ground plane. The switches

were used to vary the effective length of the transmission line.

PIN diodes offer a reliable RF switch with reasonable linearity performance. However, they con-

sume significant biasing power and have degraded Q factors above X band. The integration of

monolithic PIN diodes into an array element was first demonstrated in [51]. Similar to [22], the

aperture coupled passive design was modified in [52] utilizing PIN diodes.

1.8.2 Continuous/Analog Tuning Technologies

Nematic liquid crystal materials operate by changing their relative permittivity when an electro-

static field is applied across them. Array elements have been designed by placing LC material

between the resonating element and the ground plane; when the liquid crystal is biased the array

element resonant frequency shifts. While the operating principle is simple, the fabrication tech-

niques are complicated and the losses of LC are very high at mm-wave frequencies and below.

Additionally, LC has a slow tuning speed which degrades as the ambient temperature is lowered.

Array elements were demonstrated at X band in [24] however, the losses were very high. In [64]

a multi-resonant array element was shown at X band with acceptable losses. However the element

was not fabricated using LC. Instead, the LC was substituted with dielectric substrates with varying

dielectric constants. If LC had been used the losses would have been much higher.
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Complex oxide materials such as Barium Strontium Titanate (BST) have been utilized in reconfig-

urable reflectarray designs due to their negligible DC power consumption, fast switching speeds,

and monolithic integration capability [54]–[56]. While BST films require high biasing voltages on

the order of 35 V/µm, they use very small biasing currents on the order of pico-amps. BST has

nanosecond switching speeds, making them suitable for beam-scanning radar and multiple-beam

applications.

Varactors are a mature technology and high performance models are commercially available. They

offer wide capacitive tuning ranges and high quality factors at low frequencies. Unfortunately

they tend to suffer from higher losses and non-linearity issues above X band. However, their

great performance makes them a desirable tuning device for reflectarray design at X band and

below. In [25], a varactor was placed between a microstrip patch and the ground place to enable

reconfigurability. In [26] printed dipoles were loaded with varactors and in [60], a slotted patch

loaded with a varactor was designed. In [61] a λ/2 microstrip patch was bisected, forming two λ/4

patches. These patches were connected with varactors and a phase range of 320o was measured.
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CHAPTER 2: MONOLITHICALLY-BST-INTEGRATED

BEAMSTEERABLE REFLECTARRAY ANTENNAS

2.1 Introduction to BST-Integrated Ka-Band Reflectarrays

BST is a ferroelectric ceramic oxide material whose inherent characteristics make it very desirable

for reconfigurable reflectarray applications. When integrated into microstrip patch antennas BST

has been used as a distributed varactor, enabling reconfigurability in reflectarray unit cells [65].

BST has a high dielectric constant, negligible DC power consumption, is capable of very quick

tuning speeds, and monolithic integration [54], [55], [57], [66]–[69]. In this chapter a 9×5 BST-

integrated reflectarray operating at Ka-band is presented. The advantages and limitations of this

array are discussed. Then a BST loaded array element operating at V-band with a novel interdigital

gap configuration is presented. Finally a BST loaded dual-resonance array element operating at

Ka-band is demonstrated in simulations. The limitations of BST, in particular the limited tuning

range and large loss tangent are then discussed.

While BST has many desirable qualities for reflectarray design, perhaps the most beneficial is

the ability to monolithically integrate it into microstrip patch antennas. By cutting a gap through

the middle of a traditional λ/2 microstrip patch and depositing BST in it, a varactor loaded array

element is realized without the need for interconnections. This allows BST loaded reflectarrays

to operate at much higher frequencies than arrays loaded with discrete tuning elements. Similarly

Nematic liquid crystal (LC) loaded elements are also monolithically integrated and have been

shown to work above 100 GHz [70]. However, compared to BST, LC suffers from very high losses

at mm-wave frequencies and much slower switching speeds. Research has been applied to reduce

the losses and increase the switching speeds of LC with limited success [71].
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2.1.1 Array Element Analysis

Figure 2.1: Schematic of a reflectarray consisting of the proposed BST-integrated patch elements and two

unique biasing schemes. Re-printed from [72]

The array element presented in Fig. 2.1 consists of two λ/4 microstrip patch antennas separated by

a 10 µm gap. The gap is loaded with BST which has been shown to have a dielectric constant of 275

- 500 at Ka band [72]. The BST in the gap forms a distributed capacitor and when a DC biasing

voltage is applied across the gap the paraelectric behavior causes the permittivity of the BST to

vary, enabling reconfigurability in the array element. This array element design was previously

demonstrated in [65], however the inter-element spacing was designed for the dimensions of a

Ka-band waveguide and the array performance and angle of incidence effects weren’t studied.

The array element is designed to operate at 31.6 GHz and the inter-element spacing is set to be

a = b = 0.42∗λo (4 mm) using a parallel-plate TEM waveguide in simulations to extract the array

element’s performance under normal incidence. The dimensions of the patch are set to 2.3 mm (W)

and 1.9 mm (L). While the gap between the two λ/4 patches is 10 µm the BST that is placed in the
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gap is purposefully made 20 µm wider to ensure good electrical connections between the copper

and BST and to increase acceptable fabrication tolerances. The reflection magnitude and phase

response of the array element under normal incidence was extracted and the peak loss is 7.18 dB

with a phase range of 240o.

2.1.2 Array Design

This array element is used to design a 9×5 reflectarray using a column biasing scheme. As such

each column of 5 elements is biased using the same voltage. This design choice was made for two

reasons, firstly enabling individual biasing of each element would require that vias be drilled in

the substrate. However, the substrate is sapphire which makes drilling vias difficult and requires

advanced micro fabrication equipment. Secondly, BST requires a biasing voltage of 35 V/µm

necessitating 350 V to fully tune each array element. To achieve this high voltage commercially

off the shelf (COS) DC-DC converters are used, however, they are very costly. As such, the column

biasing scheme not only reduces the required number of DC-DC converters by a factor of 5 it also

avoids the need for advanced micro fabrication equipment. Unfortunately this column biasing

scheme also ensures that there will be phase errors along the column as each array element is

biased the same.

The required reflected phase for each element with coordinates (m,n) to point the beam to (θb, φb)

is defined by 1.3. Note that from this equation, individual biasing for each element is required.

However, with the column biasing network the beam scanning is limited to φb = 90o and 1.3 is

reduced to:

Φdes(n) = ko ∗ dn − ko(n ∗ sin(θb)) (2.1)

The phase error along each column isn’t considered in 2.1. To reduce these errors a large f/D is

used. This reduces the difference in the physical distance between the feed and the elements in
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each column, reducing the phase error when all elements have the same reflected phase. However,

this also decreases the aperture efficiency significantly, reducing the gain of the reflectarray.

2.1.3 Fabrication and Measurements

Figure 2.2: Fabricated 5×9 reflectarray using the BST-integrated capacitively loaded patches, and the array
measurement setup showing the feed, supporting structures and biasing. Re-printed from [72]

The array is fabricated on a 175µm-thick sapphire substrate in a cleanroom. First the BST is

deposited on the wafer using RF magnetron sputtering using a system pressure of 20 mTorr with

a consistent gas flow of Ar and O2. Then the excess BST is etched using photolithography and

a 2% HF solution. After which the BST is annealed in a 900o oven for 12 hours with a constant

O2 gas flow. After the annealing, the BST is crystalline and the biasing network is deposited

using the liftoff process before the copper microstrip patches and biasing pads are deposited using

electron beam (E-beam) deposition and liftoff. Finally the biasing wires are soldered and the array

is mounted in a custom mounting structure as shown in Fig. 2.2. The antenna mounting structure

was designed and fabricated using a fused, deposited material (FDM) 3-D printer.

Fig. 2.3 demonstrates continuous beam-scanning from 0o to +25o at 31.6 GHz. An increase in the
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Figure 2.3: Measured radiation patterns showing scanning on E-plane up to 25o. Re-printed from [72]

gain is observed when scanned to 13o. This is due to the image lobe being present because of the

phase errors caused by the column biasing. Likewise the sidelobe levels are very high, due in large

part to the limited phase range of the array element and the biasing scheme.

2.1.4 BST-Integrated Array: Discussion

The presented 5×9 beam-scanning reflectarray is capable of continuously scanning in the E-plane

between 0o−25o. The boresight gain is 8.3 dBi with a 4% 3-dB gain bandwidth. While this reflec-

tarray suffers from the limited phase range and high loss of the array elements it demonstrates that

BST-tuned reflectarrays are realistic at Ka band. Next as an extension of this work, the feasibility

of the split λ/2 microstrip patch element at V band will be investigated.
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Figure 2.4: Microstrip patch element with BST tunable interdigitated capacitor

2.2 A BST-Integrated V-band Patch Element with Inter-digital Gap Configuration

In this section, a V-band tunable reflectarray array element using an inter-digital gap loading struc-

ture is presented. Reconfigurability is achieved by loading the antenna element with BST thin

film along the IDC gap. The effects of substrate thickness and patch width on the reflection prop-

erties are investigated using full-wave simulations. A unit cell design demonstrating an overall

phase range of 216.3o and a maximum loss of 6.7 dB at 59.28 GHz is realized. The presented

design benefits from the monolithic integration of BST with the patch element and allows for high

frequency operation without parasitic losses.

2.2.1 Design & Simulation Setup

A rectangular microstrip patch antenna with a meandering gap made to resemble the fingers of an

interdigitated capacitor was shown in [73]. In this study, a similar element integrated with BST for

electronic reconfigurability is chosen as the unit cell as shown in Fig. 2.4 where the dimensions

are as follows: L1 × W1 = 0.975 × 1mm2, L2 × W2 = 20 × 5µm2, H = 80µm, a × b =
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3.7592 × 1.8796mm2. A meandering gap 7.5 µm wide is made along the width of the patch,

the fingers are 20 µm long and 5 µm wide. A thin layer of BST film is defined within the gap,

which acts as a tunable capacitor, whose permittivity and loss tangent are varied by applying a

DC voltage. The patch is made of copper and sapphire (εr = 10, tanδ < 0.0005) is chosen as

the substrate. Substrate thicknesses of 100 µm and 80 µm and patch widths of 1 mm and 2 mm

are simulated to optimize the unit cell. A BST relative permittivity range of 250 - 500 and a loss

tangent range of 0.02 - 0.16 is chosen.

A metallic waveguide supporting TE10 mode is used to characterize the reflectarray element. This

setup accounts for mutual coupling by simulating an infinite array of identical elements with a

fixed inter-spacing equal to the cross-sectional dimensions of the standard V-band waveguide (a =

3.7592 mm and b = 1.8796 mm).

2.2.2 Simulation Results

Figure 2.5: Reflection magnitude versus frequency for varying BST relative permittivity values
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Figure 2.6: Reflection phase versus frequency for varying BST relative permittivity values

Fig. 2.5 shows the variation of the reflection magnitude with respect to frequency across the BST

relative permittivity range for 80 µm substrate thickness and 2 mm patch width. It is observed

that the resonant frequency varies from 56.42 GHz to 57.89 GHz which corresponds to 2.61%

frequency tuning. Fig. 2.6 shows the phase response of the unit cell with respect to the frequency.

The patch is under-coupled when the relative permittivity ranges from 450 to 500 and over-coupled

for lower values. As expected the loss of the patch increases with the dielectric constant in the

over-coupled region, reaches maximum at the critically-coupled condition and decreases in the

under-coupled region [74].

It should be noted that while the unit cell transitions from under-coupled to the over-coupled con-

dition, the phase range above the resonant frequency is still continuous. This indicates that so long

as the operating frequency is higher than the frequency at which a reconfigurable unit cell becomes

critically coupled it is still possible to successfully use an array element that is under-coupled for

a portion of its tuning range. While doing so will maximize the available phase range it also

maximizes the peak element loss and renders frequencies below the critically coupled frequency

unusable.
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Figure 2.7: Reflection magnitude versus BST permittivity at their respective operation frequencies

Figure 2.8: Reflection phase versus BST permittivity at their respective operation frequencies

The substrate thickness and patch width affect the phase range and loss performance. Fig. 2.7

shows the reflection magnitude and phase response of the unit cell with respect to BST relative

permittivity for four cases, accounting for variations in patch width and substrate thickness. The

operational frequency of the patch is chosen such that the phase range is maximized while main-

taining a maximum loss of 7 dB. It is important to note that the operational frequency changes
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as the width and thickness are varied. In Fig. 2.7, due to the under-coupled condition for high

dielectric constants, lower losses are observed for smaller patch widths and substrate thicknesses.

From Fig. 2.8 it clearly seen that a maximum phase range was observed for h = 80 µm and W1 =

1 mm case. Overall, a phase range of 216o with a maximum loss of 6.7 dB was observed for the

optimal case.

2.2.3 Fabrication and Measurements

Figure 2.9: Reflection phase versus BST permittivity at their respective operation frequencies

The proposed 1 mm wide unit cell was fabricated on an 80µm thick sapphire substrate. Special

preparation was required for the substrate before fabrication of the unit cell could begin. Due to its

extreme thinness, the substrate possessed a natural tendency to bow and bend. To remove the flex

inherent in the substrate it was necessary to place the cleaned wafer face up into a programmable

furnace where the wafer was heat treated at 1000o C for 10 hours, and then allowed to cool slowly

in the furnace for 3 more hours. This treatment resulted in the flat surface required for micro
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fabrication. Following the heat treating, BST was deposited using RF magnetron sputtering. After

this the BST was patterned with photolithography and etched with a 2% HF solution. Next the

microstrip patch was defined via photolithography and copper was deposited with electron beam

evaporation before using lift off. The biasing lines were designed using highly resistive chromium

and fabricated similarly to the copper layer. Finally the unit cell was diced from the wafer, biasing

wires were soldered, and the unit cell was placed in a V-band waveguide as shown in Fig. 2.9 for

measurements.

Figure 2.10: Reflection phase versus BST permittivity at their respective operation frequencies

Figure 2.11: Reflection phase versus BST permittivity at their respective operation frequencies
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Figures 2.10 and 2.11 show the measured reflection magnitude and phase respectively of the V-

band unit cell. While the frequency of critical coupling is higher than expected, at 59 GHz instead

of 57 GHz, the unit cell is under-coupled with no biasing voltage and becomes over-coupled as

the biasing voltage is increased as expected.

Figure 2.12: Reflection phase versus BST permittivity at their respective operation frequencies

Figure 2.12 shows the loss and phase performance at 60 GHz as the biasing voltage is adjusted

from 0 to 400 V. The peak and average loss is 6 and 5.1 dB respectively while the phase range

is 193o. This represents a slightly better loss with a lower phase range than expected, which

makes sense given the frequency deviation from the designed frequency. The higher resonant

frequency increases the electrical thickness of the substrate, which will result in a more over-

coupled resonance, reducing loss and phase slope. The reduced phase slope contributes to the

decreased phase range.
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2.2.4 V-band Patch with IDC Gap: Discussion

A tunable microstrip reflectarray unit cell operating at 59.28 GHz capable of providing 216o phase

range with a maximum loss of 6.7 dB is demonstrated. This design offers a planar element, and

leverages BST technology to provide continuous electronic reconfigurability. The proposed design

uses monolithic fabrication to enable a very high operational frequency. These factors combined

with a very compact profile make this design attractive to space based communication systems.

Unfortunately the element loss is quite high and the phase range is significantly less than 360o. To

rectify these issues a BST-integrated dual-resonance design will be investigated in the next section.

2.3 Dual-Resonance, BST-Integrated Ka-band Reflectarray Element

In this section, a Ka-band tunable dual resonance reflectarray element, its design methodology,

limitations, and design tradeoffs are presented. Reconfigurability is achieved by loading the an-

tenna element with BST thin film. The effects of limited frequency tuning, coupling conditions,

and inherent loss is investigated using full-wave simulations. A unit cell design demonstrating an

overall phase range of 360o and an average loss of 8.25 dB at 30.97 GHz is realized.

2.3.1 Introduction to Dual Resonance Reflectarray Designs

Reflectarray design relies on the appropriate phase response of each element which is chosen to

compensate for the different spatial lengths from the feed to each element in order to achieve

constructive interference in the desired direction. The goal of any reflectarray element design is

to achieve at least 360o of phase range with as little loss as possible; this is especially challenging

when designing single-resonance microstrip elements. In [75] a reflectarray demonstrating a 1-

dB bandwidth of 15.9% is realized using a non-tunable dual resonance double-cross element to
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increase the phase-swing and phase-linearity of the array elements.

Many technologies have been used to design phase-agile reflectarray elements such as Nematic

liquid crystal (LC) [70], and thin-film BST [76]. LC and BST can be continuously tuned; BST

typically possesses a tuning range of approximately 1.81:1 [76] and LC usually demonstrates a

tuning range of less than 1.5:1 [70].

Figure 2.13: Dual resonant element with BST tunable capacitor.

In this section the design process of dual resonance, phase-agile reflectarray elements with a phase

range of 360o is presented. In Fig. 2.13 a dual resonance reflectarray element is presented with

the following dimensions: L1 = 1.18mm,W1 = 0.8mm,L2 = 250µm,W2 = 200µm,W3 =

400µm,RW = 150µm,R = 0.69mm. This element is used as an example of a working design

operating at Ka-band for the purposes of this discussion. The limitations of the tuning technology

and the design constraints this creates is then investigated.
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2.3.2 Dual Resonance Theory

Figure 2.14: Loss performance of the dual resonant element. The tuned and non-tuned frequencies, and

the three operating frequencies corresponding to 360o phase range at the three tuning ranges are marked.

Dual resonance reflectarray elements all share the same core operating characteristics regardless of

whether the desired reflection phase is achieved through physical tuning as in [75] or electrically

phase-agile elements as in [76]. Regardless of the tuning method, the desired phase response

is realized by sweeping the resonant frequency of each resonance. For this discussion the initial

resonant frequencies are labeled f1, f2 and the tuned frequencies are labeled f ′1, f ′2 as shown in Fig.

2.14. To achieve a phase range of at least 360o f ′1 must be greater than f2 and both resonances must

be over-coupled [41] across the tuning range. If the coupling conditions of the two resonances are

maintained, the frequency range between f ′1 and f2 will have a maximum phase range of at least

360o.

When designing a non-tunable reflectarray element these requirements are not difficult to realize

as the frequency tuning range is driven by physical dimensions and is essentially infinite. In this
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case, the frequency separation between f1 and f2 can be as large as desired which allows for both

resonances to be very over-coupled, limiting the loss of the element. This is true of the design

presented in [75] as the element presented resonates at 59.05 GHz and 85.5 GHz in its non-tuned

state. However, when designing phase-agile reflectarray elements the frequency tuning range,

f ′1 − f1 is limited. This limits the acceptable frequency separation between the two resonances

f2 − f1 which puts constraints on the acceptable coupling levels of these resonances.

Three key factors need to be considered when designing a phase-agile reflectarray element: the

frequency tuning range of each resonance, the frequency separation of each resonance, and the

coupling of each resonance. The frequency tuning range of each resonance will determine the

maximum frequency separation between both resonances and is the main limiting factor of the

loss performance of the element across the tuning range. The maximum acceptable frequency

separation will determine the coupling condition of each resonance; as each resonance is made

more over-coupled, the loss decreases [41]. However, as the frequency separation is reduced, the

resonances must move closer to critical coupling which creates significantly more loss. From this

it can be seen that an increase in the frequency tuning range will result in a decrease in the total

loss of the reflectarray element.

2.3.3 Simulation Results

The dual resonance reflectarray element shown in Fig. 2.13 consists of an internal cross structure

modified with a mushroom cap for minimization and an external ring structure, both of which are

loaded with BST. The element is designed on a 510-µm-thick sapphire substrate and simulated in

a Ka-band waveguide to simulate the element being surrounded by an infinite array of identical

elements. A BST relative permittivity range of 500 - 275 is known to be accurate and represents

a 1.81:1 tuning range however for the sake of this discussion ranges of 2.5:1 and 3:1 are also
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investigated and the loss performance is compared.

Figure 2.15: Loss performance at operating frequencies that provide 360o phase range for the three chosen

BST tuning ranges. These frequencies are 30.97 GHz, 31.98 GHz, and 32.7 GHz.

Fig. 2.14 shows the reflection coefficient for this unit cell as the dielectric constant is tuned from

500-166 covering all three proposed tuning ranges. Also, three separate operating frequencies

are marked indicating the frequency at which 360o of phase range is realized with all three BST

tuning ranges. Fig. 2.15 shows the loss at the three marked frequencies as the BST is tuned.

The maximum and average loss when considering a 1.81:1 tuning ratio is 18.9 dB and 8.25 dB,

respectively. However, when considering a 3:1 ratio the maximum and average loss are reduced to

4.8 dB and 1.72 dB, respectively.

2.3.4 BST-Integrated Dual-Resonance Element: Discussion

The design process and constraints of a phase-agile dual resonance reflectarray element with a

360o phase range is presented. The effects of a limited frequency tuning range and the optimal
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design methodology given a specific frequency tuning range are discussed. A working reflectarray

element design displaying 360o of continuous phase range is presented; however, due to a 2.75%

frequency tuning range the loss of this element is very high. Methods of reducing the loss are

discussed and hinge on an enhanced frequency tuning range. Future work includes different BST

loading mechanisms to increase the frequency tuning range and the application of this design

methodology to elements using different tuning technologies. In the next chapter a dual-resonant

reflectarray design loaded with varactors is presented. While varactors have increased losses at

mm-wave frequencies, they have acceptable losses at X band and lower frequencies. Varactors also

offer significantly larger tuning ranges than BST which will greatly improve the performance of

the dual-resonance design presented here.
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CHAPTER 3: PHASE-AGILE DUAL-RESONANCE REFLECTARRAY

ELEMENT

To overcome the loss and phase range issues presented in the previous chapter a single-layer, dual-

resonance, tunable reflectarray unit cell operating at X band is presented in this chapter. The unit

cell is composed of a cross element and a ring element, both capacitively loaded with varactors,

enabling re-configurability. The larger capacitive tuning range of the varactors allows for this

design to achieve greater than 360o of phase range while demonstrating much lower losses than

the previous BST tuned element. An equivalent circuit is developed and verified to demonstrate the

dual-resonant operational theory and aid in the design of the dual-resonant unit cell. The equivalent

circuit is used to demonstrate the underlying physics of dual-resonant reflectarray antennas and

provides a systematic design procedure. The proposed design is evaluated using both full-wave

simulations and measurements. The effects of external and mutual coupling, and frequency tuning

range on the loss and fractional bandwidth of the unit cell are presented. A continuous phase range

of 375o with a peak and average loss of 4.78 and 3.09 dB at 10.0 GHz, respectively, is measured.

The presented analysis provides guidelines for optimizing the unit cell performance required for

high-efficiency beam-scanning reflectarray antennas.

3.1 Introduction

Microstrip reflectarrays combine the desirable attributes of traditional arrays and reflector anten-

nas: high gain, planar design, low fabrication costs, and spatial feeding [12], while avoiding their

disadvantages. Traditional arrays use lossy and costly beamforming networks which are avoided

by the spatial feeding in reflectarrays. In addition, the reflectarray’s planar design makes the fabri-

cation much more cost effective than the non-planar design of reflector antennas.
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It is desirable for highly directive antennas to be capable of beam steering, which while possible

with reflector antennas is difficult. Reflector antennas can steer the beam by physically moving

the aperture, or by using a mechanically or electronically steered feed [6]. However, mechanically

rotating the aperture drastically complicates its mounting structure and provides very slow scan-

ning, while the use of beam-steering feeds is limited to small scan angles or requires an oversized

reflector. Phased arrays can introduce phase shifters in the feeding network or use T/R modules to

enable beam steering. Nevertheless, T/R modules are costly, power hungry, and generate signifi-

cant heat while phase shifters introduce high losses [7] and in the case of discrete phase shifters,

phase error [8].

The realization of a beam-steerable reflectarray requires that the reflection phase of each antenna

element be controllable. Several techniques have been used to implement phase agility in reflec-

tarray antenna elements such as loading the unit cells with tuning elements in the dielectric, the

ground plane, or on the patch element itself [25], [50], [77], as well as aperture-coupling patch ele-

ments to a transmission line loaded with tuning elements [78]. Many technologies have been used

to realize these tuning elements: PIN diodes [79], Micro-Electro-Mechanical Systems (MEMS)

[80], nematic liquid crystal (LC) [64], graphene [81], Barium Strontium Titanate (BST) [82], and

varactors [83].

In general, reflectarray phase control can be organized into two groups, discrete and analog. Dis-

crete tuning is desirable for several reasons: discrete devices such as PIN diodes [52] and MEMS

switches [84] typically have lower losses; the implementation of the control circuit is simpler;

and they are typically more reliable. However, discrete tuning introduces phase quantization er-

ror, especially in single-bit designs. This error reduces reflectarray directivity [23] and increases

side lobe levels [47]. While multi-bit designs reduce this error, they also introduce higher losses

and complicate the biasing networks. In practice, analog phase control tends to be less reliable

and introduces complications in the control circuit. However, analog phase control is capable of
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avoiding quantization errors, making reconfigurable elements with large continuous tuning ranges

worth investigation. Graphene, LC, and BST offer continuous tuning [85]–[87]. However, both

graphene and LC exhibit high losses at sub-millimeter wave frequencies [88], [89]. BST has been

shown to be capable of high power handling and very quick tuning speeds. However, it introduces

significant loss for reflectarray antennas due to its limited tuning range [72]. In this chapter, semi-

conductor varactors are chosen for the tuning elements since they can operate at X band with very

large tuning ranges and good loss performance [83]. It should be noted that the Q-factor-based

design theory presented herein is similarly applicable to discrete tuning.

When designing reflectarrays, the loss and phase performance of the array elements are critical.

It is desirable to have array elements that exhibit at least 360oreflection phase range with both

low losses and low phase slopes. Non-tunable, dual-resonant unit cells have been demonstrated in

[90] and [46] in which the two resonances have been coupled together to provide a phase range in

excess of 360o. A phase-agile dual-resonance reflectarray element is highly desirable for beam-

steerable reflectarray antennas due to its increased phase range. However, its design is complicated

since both resonances need to be tuned appropriately to ensure the mutual coupling between them

does not significantly vary over the frequency tuning range. In [91], a BST-loaded dual-resonant

reflectarray element was proposed with greater than 360ophase range at Ka band. Losses were still

very high largely due to the limited tuning ratio of 1.81:1 from the BST dielectric constant. In [92]

a dual-resonant reflectarray element loaded with six varactors was presented at C band. However,

discussion on the operating theory was limited.

In this chapter, an equivalent circuit is developed and used to demonstrate the underlying physics

behind the operation of phase-agile dual-resonant reflectarray elements. Q-factor theory is used to

contrast the inherent design tradeoffs, providing a method to optimize unit cell performance which

is applicable to many disparate designs. This theory is used to guide the design of a single linearly-

polarized, electronically-reconfigurable dual-resonant reflectarray unit cell loaded with varactors
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and operating at X band. The design and optimization of the biasing network are discussed, and

the fabrication and measurement of the array unit cell are presented.

3.2 Operational Theory

Figure 3.1: Configuration of the cross/ring dual-resonant reflectarray unit cell.

The dual-resonant unit cell shown in Fig. 3.1 consists of a cross structure placed inside a ring

structure, both of which are loaded with two varactors. The dimensions are as follows: RW =

325 µm, R1 = 1.83 mm, R2 = 2 mm, W1 = 500 µm, W2 = 1.3 mm, W3 = 250 µm, W4 = 2.4

mm, W5 = 228 µm, L1 = 600 µm, L2 = 600 µm, L3= 400 µm, L4 = 200 µm, L5 = 3.153 mm,

Substrate thickness h = 1270 µm.The varactors (MACOM MA46580-1209) were chosen for their

high capacitance tuning ratio and high quality (Q) factor. The datasheet for these varactors state

that the capacitance ranges from 0.15-1.0 pF with a minimum Q of 3000 at 50MHz. However, it

was observed in this study that at 10 GHz, the varactors equivalent series resistance (ESR) increases

significantly when tuned to capacitances larger than 0.4 pF. Thus, operating from 0.15-0.4 pF can
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greatly improve the loss performance of the varactors. The internal cross element is also loaded

with a mushroom cap of width W2 and length L1 for minimization. The dual-resonant unit cell

is placed inside an X-band waveguide (a = 22.86 mm, b = 10.16 mm) to simulate the effects of

mutual coupling in an infinite array and to facilitate measurements.

Figure 3.2: Equivalent circuit model for (a) isolated ring and (b) dual-resonant unit cell configurations.
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Table 3.1: Equivalent Circuit Values as Varactors are Tuned

CVar(pF) LRing Ext.(nH) LCross Ext.(nH) CMut(nF)

0.15 1.208 14.743 167.3

0.2 1.241 4.783 192.9

0.25 1.300 3.301 217.8

0.3 1.365 2.497 230.5

0.35 1.416 2.204 256.7

0.4 1.469 2.030 281.1

To aid in the design of the dual-resonant unit cell, the equivalent circuits shown in Fig. 3.2 were

developed using Keysight Advanced Design System (ADS). 3.2(a) shows the equivalent circuit for

the ring structure when it is simulated in isolation in an X-band waveguide. The circuit component

values are as follows: LCross Ext. = 2.03 nH, LRing Ext. = 1.469 nH, CMut = 810 nF, Cc = 2.917 pF, Lc

= 68.3 pH, Rc = 700 Ω, Cr = 1.65 pF, Lr = 0.1165 nH, Rr = 2.86 kΩ, CVar = 0.4 pF, ESR = 1 Ω.

The inductive π -network LRingExt., represents the coupling between the incident TE10 mode from

the waveguide to the ring structure. The resonating ring structure is represented as a parallel RLC

resonator while the varactor loading is represented by two parallel variable capacitors, Cvar each

with a given ESR. These equivalent circuits model the electrical performance of the proposed unit

cell and are developed by extracting component values from HFSS simulations. First, the L,C,

and CV ar values are found by matching the resonant frequency and frequency tuning range of the

ring/cross in HFSS where the ring/cross are simulated in isolation. Then the LExt. and R values

are set by matching the loss and phase slope at the resonant frequency. CMut. is set to match the

HFSS simulation results when the antenna elements are combined. As the varactors are tuned,

the electrical length of both elements change, altering the external and mutual coupling. Table 3.1

details the equivalent circuit component values for several varactor capacitances.
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Figure 3.3: Comparison of HFSS and ADS simulations of the reflection magnitude of the dual-resonant

element at three varactor capacitances.

Fig. 3.3 shows the reflection magnitude of the dual-resonant unit cell utilizing HFSS and the equiv-

alent circuit, where f1 and f2 denote the frequency of the lower and upper resonances, respectively,

when the varactors are set to 0.4 pF. When they are tuned to 0.15 pF, the resonant frequencies f1and

f2 shift to f ′1 and f ′2, respectively. In the same figure, f ′′1 and f ′2’ correspond to the case when the

varactors are tuned to 0.175 pF. There is good agreement in the simulation results between HFSS

and ADS showing that the equivalent circuit can be used as a design aid.

Before discussing the operational theory behind dual-resonant reflectarray designs, the use of Q

factors in analyzing the reflection properties of reflectarray unit cells needs to be understood, as

reported in [41]. The reflection coefficient at the antenna element surface is expressed as

Γ(f) =
1

Qrad
− 1

Qo
− 2j(f−fr)

fr

1
Qrad
− 1

Qo
+ 2j(f−fr)

fr

(3.1)

where Qrad is the radiation Q factor and Qo is the parallel combination of metallic loss Qc and di-

electric lossQd of the antenna element while fr is the resonant frequency. The reflection coefficient
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at the resonant frequency can be derived from 3.1 as

Γ(f) =
1

Qrad

1
Qrad
− 1

Qo

(3.2)

It can be observed from 3.2 that there are three distinct conditions: critically-coupled (Qrad = Qo);

under-coupled (Qrad > Qo); and over-coupled (Qrad < Qo).

3.2.1 Cricitally-coupled Condition

When the unit cell is critically-coupled, the radiationQ is equal toQo, and the reflection coefficient

given by 3.2 is zero. In this condition, all of the incident energy is dissipated inside the unit cell.

3.2.2 Under-coupled Condition

If the unit cell is under-coupled, the radiationQ is larger thanQo. The reflection phase at resonance

is always 180oand the unit cell exhibits an anomalous phase phenomenon as previously observed

in [93] and [94]. This phase response provides no phase range and is not desirable for reflectarray

applications.

3.2.3 Over-coupled Condition

WhenQrad < Qo, the unit cell is considered to be over-coupled, and the reflection phase around the

resonant frequency is continuous. This phase behavior makes the over-coupled condition necessary

for reflectarray applications. If the ring resonator of the equivalent circuit shown in 3.2 is under-

coupled, it is necessary to decreaseQrad of the ring to reach the over-coupled condition by reducing

the value of LRingExt.
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3.2.4 Phase Range Optimization

Figure 3.4: Reflection phase of dual-resonant unit cell at three different varactor capacitances with both
resonances over-coupled.

There are two main reasons to utilize dual-resonant unit cells in reflectarray design: to increase the

available phase range to greater than 360o, and to provide a more linear phase slope to improve

bandwidth. The core principle of dual-resonant reflectarray designs is to couple two over-coupled

resonating structures together so that the phase shift induced by each resonance can be combined,

increasing the total phase range of the array element. Fig. 3.4 shows the phase response of the

equivalent circuit in Fig. 3.2(b). When the varactors are tuned to 0.15 pF, the maximum phase is

489oand at least 360ophase range is available from 10.1 – 10.7 GHz. It is observed in Fig. 3.3 that

f ′1 > f2. However, if the smallest capacitance of the varactor is limited to 0.175 pF, the peak phase

range is reduced to 325o. As shown in Fig. 3.3, f ′′1 < f2.
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Figure 3.5: Reflection phase of dual-resonant unit cell at three different varactor capacitances with one of

the two resonances under-coupled.

In Fig. 3.5 the inductive π-networks of the equivalent circuit are adjusted so either the upper or the

lower resonance is under-coupled. When either the cross or the ring element is under-coupled, the

peak phase range is under 305o, as shown in Fig. 3.5. In both cases, the frequency tuning range is

great enough to ensure f ′1 > f2. However, the anomalous phase response adds no additional phase

range.
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3.2.5 Phase Slope at Resonance

Figure 3.6: Reflection phase of the dual-resonant element with different external coupling conditions when

CVar is set to 0.4 and 0.15 pF.

Figure 3.7: Phase range and phase slope at 10.3 GHz of the dual-resonant unit cell using the equivalent

circuit where LRing Ext. = 0.35 LCross Ext..

The bandwidth of a reflectarray is limited by the sensitivity of the reflection phase vs. frequency

[38], [37]. To reduce this sensitivity, the phase response can be made more linear by reducing the

phase slope around the resonant frequency. Fig. 3.6 demonstrates the effects of varying theQrad of
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each resonance using the equivalent circuit model. The solid and dashed traces denote the varactors

being tuned to 0.4 and 0.15 pF, respectively. From Fig. 3.6, it can be seen that decreasingQrad will

reduce the phase slope of each resonance and improve the bandwidth performance. However, Qrad

also affects the phase tuning range. Fig. 3.7 shows the maximum phase range and phase slope at

10.3 GHz for several values of LCrossExt. and LRingExt. where LRingExt. = 0.35×LCrossExt.. The

discontinuous phase slope when LCrossExt. is 6.74 nH is due to both resonances being critically

coupled. Decreasing LCrossExt. from 6.65 to 2 nH causes the phase range and phase slope to

reduce from 600oand -53.68o/MHz to 387.2oand -0.237o/MHz, respectively. In general, there is a

tradeoff between phase range and phase slope.

3.2.6 Mutual-coupling

Figure 3.8: Reflection magnitude of the dual-resonant unit cell equivalent circuit as the capacitive π-

network representing the mutual coupling between the resonators is tuned.
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Figure 3.9: Algorithm used to design dual resonant reflectarray unit cells.

The equivalent circuit is used to demonstrate the effects of both strong and weak mutual coupling

in Fig. 3.8, where both resonances are over-coupled. As the mutual coupling level increases, the

loss of the upper resonance decreases and the frequency separation between the two resonances

increases. As previously demonstrated, to achieve greater than 360ophase range, the condition

f ′1 > f2 must be satisfied. However, this condition may not be met for a strong mutual coupling

case due to the limited tuning range of the varactors, resulting in less than 360ophase range. The

design flow of any dual-resonant phase-agile array element is shown in figure Fig. 3.9.
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3.3 Design Procedure and Simulations

3.3.1 Substrate Thickness

The choice of substrate thickness is critical for the dual-resonant unit cell, as it affects the loss and

phase sensitivity of both ring and cross elements, as well as the mutual coupling between them.

Figure 3.10: The average peak loss and frequency separation between the two resonances of the dual-

resonant unit cell as a function of the substrate thickness in HFSS. The varactors are adjusted to 0.4 pF.

Fig. 3.10 shows the average peak loss and the frequency separation between the two resonances

of a dual-resonant unit cell as the substrate thickness is adjusted. The average peak loss is the

average loss at the resonant frequencies of lower and higher resonances. As the substrate thickness

increases, the average peak loss decreases. This is due to a reduction in the Qrad of each resonance

which has been shown to be inversely related to substrate thickness [41]. Under 1200 µm the loss

decreases, however, this is due to one of the resonances becoming under-coupled.

The substrate thickness greatly affects the mutual coupling between the two resonating structures.

Fig. 3.10 shows that when the substrate thickness is increased, the frequency separation between
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the two resonances also increases, indicating an increase in the mutual coupling strength. The sub-

strate thickness is designed to be as thick as possible while maintaining a frequency separation that

is less than the frequency tuning range of the antenna element. In this design, the dual-resonant

unit cell has a frequency tuning range of 1.2 GHz which makes 1450 µm the ideal substrate thick-

ness marked by the horizontal line in Fig. 3.10. However, this substrate thickness is not an industry

standard and therefore a substrate thickness of 1270 µm was chosen instead.

3.3.2 Frequency Tuning Range Optimization

Figure 3.11: The average peak loss and frequency tuning range of the isolated cross element in HFSS as

the cross gap width L3 is varied and the varactors are tuned between 0.15 – 0.4 pF.

48



Figure 3.12: Reflection magnitude of the isolated ring and cross structure from HFSS as the varactor

capacitance is varied from 0.15 to 0.4 pF.

To simplify the design of the biasing network, both ring and cross elements are biased with the

same voltage. Thus, the frequency tuning range of both elements must be similar. Otherwise the

mutual coupling between them will change significantly as the varactors are tuned. Additionally, to

satisfy the f ′1 > f2 condition while using a large substrate thickness, the frequency tuning range of

both elements should be maximized. The frequency tuning range of the cross element is not only

dependent on the varactor but also on the gap L3. Fig. 3.11 shows that larger L3dimensions can

enhance the frequency tuning range of the cross, however, at the expenses of higher peak losses.

Therefore, the optimal value of L3, for the trade-off between loss and frequency tuning range, is

400 µm as shown in Fig. 3.11.

Fig. 3.12 shows the reflection magnitude of the ring and cross elements when simulated individu-

ally; both elements are over-coupled over the entire varactor tuning range. The frequency tuning

range of the cross is similar to that of the ring element. The loss of the cross element is 2.5 dB

higher than the ring element when the varactors are set to 0.4 pF. However, the loss of the ring

and cross elements are reduced by 2.1 and 2.9 dB, respectively, as the varactors are tuned to 0.15
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pF. When the dual-resonant unit cell is formed by combining the two resonating structures, the

frequency separation between the two resonances is larger than what is allowed by the substrate

thickness. Therefore, the natural resonant frequency of ring is adjusted to 9.43 GHz in order to

achieve 1.1 GHz frequency separation.

3.3.3 Loss Optimization

The operating frequency of the dual-resonant reflectarray unit cell will be chosen as f2. As long

as both resonances are over-coupled and f ′1 > f2, it will have greater than 360o phase range.

When the varactors are tuned to 0.4 pF, the lower resonance resonates at 9.2 GHz, well below the

frequency of operation. Thus, in this configuration, the loss of this resonance does not affect the

loss performance of the dual-resonant unit cell. However, the loss of the upper resonance does,

as it resonates at the operating frequency. Additionally, the loss of both resonances is expected to

decrease as the capacitance of the varactors is reduced. This makes it important to minimize the

loss of the upper resonance at 0.4 pF even if it increases the loss of the lower resonance.

Figure 3.13: Reflection magnitude of the dual-resonant element as the physical spacing between the two

elements is varied in HFSS. The varactors are adjusted to 0.4 pF.
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From Fig. 3.8, it is observed that changes to the mutual coupling level will affect the loss of the

upper resonance. The substrate thickness has been shown to affect the mutual coupling. However,

it also affects many other parameters and therefore is not suited to fine tune the mutual coupling.

Another method to control the mutual coupling is to adjust the physical separation between both

elements. The cross element was designed with a mushroom cap structure consisting of W2 and

L1 as shown in Fig. 3.1. When L1 is increased, the resonant frequency of the cross is reduced. If

the resonant length of the cross element R1 is simultaneously decreased, the resonant frequency

remains the same. This allows for the physical spacing between the ring and cross elements to be

controlled without changing the resonant frequency of either one. The effect of changing R2 – R1

is illustrated in Fig. 3.13, which is very similar to Fig. 3.8. As demonstrated in Section II, the

mutual coupling should be increased to reduce the loss of the upper resonance, while ensuring the

frequency separation is less than the frequency tuning range. Thus, the physical spacing was set to

170 µm as the frequency separation is 1.1 GHz.

Figure 3.14: Reflection magnitude of the dual-resonant element at 10.3 GHz for several physical spacing

as the varactors are tuned in HFSS. L1 is varied inversely to R1 such that the cross resonates at the same

frequency and R2 is held constant.

In Fig. 3.3, the lower and upper resonances resonate at 10.3 GHz when the varactors are tuned
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to 0.175 and 0.4 pF, respectively. Thus, the loss at the operating frequency is the loss of each

resonance at these capacitance values. When the varactor capacitance is between these values,

neither is at 10.3 GHz, reducing the loss. Fig. 3.14 shows the loss at 10.3 GHz as the varactors

are tuned and the physical spacing is varied. When the physical spacing is increased to be greater

than 170 µm, the loss at the operating frequency at the low capacitance values does not vary

significantly but the loss at 0.4 pF increases from 5.6 to 11.4 dB. While decreasing R2 – R1 to

125 µm will reduce the loss at 0.4 pF, the loss at 0.15 pF increases significantly and the frequency

separation is larger than the frequency tuning range.

3.3.4 Simulation Results

Figure 3.15: Reflection magnitude and phase of the complete dual-resonant unit cell shown in Fig. 3.1

simulated in HFSS as the varactor capacitance is tuned.

Fig. 3.15 shows the reflection magnitude and phase of the optimized dual-resonant unit cell versus

frequency, as the varactors are tuned. Due to the X-band waveguide used to simulate the mutual

coupling of an infinite array, the waves both incident on and transmitted by the unit cell are TE10

mode waves. From Fig. 3.15, it is shown that both resonances are over-coupled throughout the
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entire tuning range. There is a region from 10.2-10.7 GHz in which greater than 360ocontinuous

phase range is observed. It is also shown that the loss of the lower resonance decreases from 12 to

4.5 dB over the varactor tuning range while the loss of the upper resonance slightly increases. The

increase of the loss of the upper resonance when the varactor is set to 0.15 pF is mainly due to the

fact that the frequency separation is reduced from 1.1 GHz (0.4pF) to 0.67 GHz (0.15 pF).

Figure 3.16: Simulated reflection magnitude and phase of the final design, versus varactor capacitance with

and without the biasing network at 10.3 GHz.

The loss and phase response of the dual-resonant unit cell at 10.3 GHz versus the varactor capac-

itance are shown in Fig. 3.16. It is observed that the dual-resonant element has a phase range

greater than 440owhile the peak loss is 5.57 dB and the average loss across the tuning range is only

2.81 dB. In this design, it is found that f ′1 > f2 even when the varactor tuning range is limited to

0.15 – 0.35 pF. From Fig. 3.16, when the varactors are tuned between 0.15 – 0.35 pF, the unit cell

demonstrates a phase range of 365o, while the peak and average loss are reduced to 4.2 dB and

2.22 dB, respectively.
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Figure 3.17: Reflection magnitude and phase versus varactor capacitance at 10.3 GHz for varying incident

angles using Floquet analysis in HFSS.

To understand the effects of incidence angles on the reflection properties of the unit cell, Floquet

analysis is used. HFSS simulations employing master-slave boundaries are used to extract the

reflection properties from incidence angles up to 40ofor both TE and TM polarizations which are

then compared to normal incidence. Fig. 3.17 shows the reflection magnitude and phase at 10.3

GHz versus the varactor capacitance. It is observed that the loss of the cross element when excited

by either TE or TM waves increases as the angle of incidence increases. However, the loss of the

ring element does not change significantly for TE waves and decreases when excited by TM waves.

The reflection phase is less sensitive to the angle of incidence than the reflection magnitude, and

changes very little except for when the varactors are tuned to 0.4 pF. Similar to the results shown

in Fig. 3.16, 360ophase range is available between 0.15 – 0.35 pF for all cases except the TE

polarization with 40oincidence, which only shows 341owithin this capacitance range.
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3.4 Biasing Network Design

Figure 3.18: The E-field of both ring and cross elements at (a) 9.8 GHz, (b) 10.3 GHz, (c) 10.6 GHz when

the varactors are tuned to 0.4 pF; at (d) 9.8 GHz, (e) 10.3 GHz, (f) 10.6 GHz when the varactors are tuned

to 0.175 pF.

The DC biasing network for the varactors should exhibit minimal effects on the performance of

the reflectarray element. In this design, 50-µm-wide copper lines are placed at the Emin, of both

ring and cross elements. It should be noted that copper lines are used instead of highly-resistive

chromium in order to reduce the fabrication complexity. The biasing lines connect to vias that are

drilled through the substrate, moving the biasing network behind the ground plane, which makes

large array designs convenient.
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The Emin, points on both ring and cross elements shift versus the resonant frequency. In order to

optmize the tapping locations of bias lines, the E-field magnitudes at the extremes of the varactor

tuning range, 0.175 and 0.4 pF, and each at three frequencies, 9.8, 10.3, and 10.6 GHz, are plotted

in Fig. 3.18. From the studies shown in Section III (d), the Emin, tapping points at 0.4 pF are

the most important as the peak loss of the upper resonance occurs at this capacitance. From Fig.

3.18, the biasing lines are accuratley placed at the Emin, of both ring and cross elements at all

three frequencies when the varactors are tuned to 0.4 pF. When the varactors are tuned to 0.175 pF,

the biasing lines on the ring are still accuratly placed at its Emin, points for all three frequencies.

Though the Emin, points of the cross element shift slightly at 10.6 GHz, the upper resonace is

much higher than the operating frequency of the reflectarray unit cell. Therefore, its effect on the

unit cell performance is minimal.

Using a straight biasing line from the Emin, of the cross to that of the ring might interfere with

the mushroom structure when using large values of L1or W2. Thus the biasing line is meandered

in the H-plane to the edge of the cross element before moving to the Emin, of the ring element.

Additionally, the biasing network was found to have an undesirable resonance near the operating

frequency when a straight segment was used to connect ring and cross elements. Meandering the

biasing line removed this resonance.

Fig. 3.16 shows the phase and loss response with and without the biasing network at 10.3 GHz

when the varactors are tuned. The most significant deviation between the two cases is at 0.4 pF

where the biasing network introduces 0.52 dB loss. However, for all other capacitance values,

the biasing network adds less than 0.1 dB loss. On average, the biasing network only adds 0.12

dB loss and introduces 5.8ophase deviation. The cross polarization levels at 10.3 GHz for all

varactor capacitances are better than -20 dB and are not shown in Fig. 3.16 for the sake of brevity.

Furthermore, the dual-resonant unit cell was used to simulate a 7×7 reflectarray to verify its cross-

pol. level. Though the biasing network is asymetric in the E- and H-planes, it was found that the
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7×7 reflectarray has a cross-pol level of -23 dB when the beam is pointed to the boresight.

3.5 Fabrication and Measurement Results

3.5.1 Fabrication and Measurement Methodology

The dual-resonant reflectarray element is fabricated on a 1.27-mm-thick Rogers Duroid 6010 (εr

=10.2, tanδ = 0.0023) substrate. This substrate is chosen for its high dielectric constant, tight

thickness tolerance, and good thermal mechanical stability. First, one side of the substrate is etched

to remove the original copper cladding. Then a copper seed layer is deposited using electron

beam deposition. After defining the features using photolithography, the sample is placed in an

electroplating solution and 10 µm of copper is grown. The seed layer is then etched away, the

substrate is diced, and the biasing wires and varactors are soldered on.

Figure 3.19: Measurement setup showing the fabricated dual-resonant unit cell with biasing wires, sample

holder, and the waveguide adapter

The dual-resonant element is measured using an X-band waveguide mounted to a substrate holder
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as shown in Fig. 3.19 where the reference plane is calibrated to the surface of the sample. Even

though the bias wires are coated in enamel, small strips of non-conductive tape are used to isolate

the biasing wires between the ground plane and the waveguide wall section.

3.5.2 Measurement Results

Figure 3.20: Measured reflection magnitude and phase versus frequency for various bias voltages and

compared to HFSS simulations when the varactor are tuned to 0.4 pF.

The measured and simulated loss and phase responses when the varactors are set to 0.4 pF are

shown in Fig. 3.20. The agreement between simulation and measurement for the lower resonance

is excellent. There is a slight frequency deviation ( 2.5%) for the upper resonance. The measured

loss at the upper resonance is 0.9 dB greater than the simulated value. The measured phase slopes

of both resonances are well matched with simulations even with the frequency shift at the upper

resonance.

Fig. 3.20 shows the measured loss and phase responses as the biasing voltage is increased from

6.5 to 16 V, corresponding to a capacitance range of 0.4-0.15 pF. As shown in Fig. 3.20, the loss of

the upper resonance is held constant for most of the tuning range and increases at the upper tuning

58



limit, while the loss of the lower resonance is greatly reduced as the biasing voltage is increased.

This measurement result is consistent with the simulation results in Fig. 3.15. From the phase

response, both resonances are clearly over-coupled for the entire tuning range.

Figure 3.21: Measured reflection magnitude and phase at 10.0, 10.2 and 10.4 GHz as the bias voltage is

adjusted.

3.21 shows the measured loss and phase responses at three frequencies, 10.0, 10.2, and 10.4 GHz,

as the biasing voltage is varied. The phase range at 10.0, 10.2, and 10.4 GHz is 402o, 440.2o, and

367.6o, while the peak loss is 6.39, 6.91, and 6.43 dB and the average loss is 3.22, 3.29, and 3.62

dB, respectively. When the bias voltage is varied from 7 (0.35pF) to 16 V (0.15 pF), the phase

range at 10.0 GHz is reduced to 375owhile the phase range at 10.2 and 10.4 GHz is increased to

440.6oand 391.8orespectively. With this biasing range, the peak loss at 10.0, 10.2, and 10.4 GHz

is 4.78, 6.91, and 6.43 dB, while the average loss is 3.09, 3.49, and 3.73 dB, respectively.

The frequency dependency of the phase of the reflection coefficient (Ψ) varies at each biasing

voltage. By taking the absolute difference between Ψ at a given frequency and Ψ at the operating

frequency for each biasing voltage, a phase variation curve as a function of the biasing voltage is

defined. The difference between the maximum and minimum of this curve gives the maximum
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relative phase variation, emax 3.3 between two reflectarray elements.

emax = max
VR

|Ψ(f)−Ψ(fo)| −min
VR

|Ψ(f)−Ψ(fo)| (3.3)

This measurement can be used to evaluate the bandwidth performance of the dual-resonant re-

flectarray unit cell [78] and is shown in 3.22 for the simulated and measured unit cells at their

respective operating frequencies. The simulated and measured bandwidth where emax ≤ 22.5ois

175 (1.7%) and 162 MHz (1.62%), respectively.

Figure 3.22: Comparison of measured and simulated element phase bandwidth
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Table 3.2: Comparison of Reconfigurable Recflectarray Unit Cell Designs

This work [64] [90] [77] [82] [84]

Tuning Technology Varactor LC Varactor Varactors BST MEMS

# of Tuning Elements 4 1 dist. 6 2 1 dist. 4

Phase Tuning type Cont. N/A Cont. Cont. Cont. Discrete

Phase Range 375◦ 400◦ 380◦ 320.2◦ 250◦ 1◦/180◦

Tuning voltage 7-16V N/A 2-20V 0-30V 0-400V 0/80V

Operating Frequency 10 GHz 10 GHz 5.5 GHz 5.5 GHz 10.3 GHz 11.2

Peak Loss 4.78 dB 4.7 dB 3.5 dB 3.5 dB 5.8 dB 1.4

Average Loss 3.09 dB N/A N/A N/A N/A 0.6 dB

Table 3.2 shows the comparison to five other reconfigurable reflectarray unit cell designs, utilizing

LC [64], varactor [77], [90], BST [82], and MEMS [84] tuners. The unit cell presented in this

chapter compares favorably in most categories with those listed in Table 3.2. It should be noted

that the unit cell presented in [64] uses three non-tunable unit cells to emulate reconfigurability.

Therefore, the loss performance is expected to degrade with actual tuners in place.

The presented unit cell is designed for a single linear polarization. However, the design was re-

cently extended to support dual polarization using simulations [95]. In that chapter, special care

was taken to ensure symmetry in the horizontal and vertical planes to reduce the cross-polarization

response. While limited to simulations, the design showed cross polarization levels lower than -30

dB while maintaining 360ophase range and similar losses to the design presented in this work.
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3.6 Discussion

A tunable dual-resonant reflectarray unit cell has been designed, simulated and fabricated at X

band. An equivalent circuit was developed and verified by full-wave simulations. The operational

theory and design procedure are described showing how to minimize loss and phase sensitivity

while achieving a continuous phase range in excess of 360o. A dual-resonant unit cell composed

of a ring and cross element demonstrated a phase range of 375owith an average loss of 3.09 dB at

10.0 GHz.

This research on tunable antenna elements is necessary to realize high-performance electronically

beamsteerable reflectarrays with low loss, small phase error, and higher gain. However, the array

performance hasn’t been evaluated. Additionally the waveguide inter-element spacing required the

use of a non-ideal substrate, causing the loss performance to suffer. In the next chapter the unit

cell is re-designed for proper array spacing, the loss performance is enhanced and a novel genetic

algorithm is developed to enable accurate biasing voltages across the entire aperture.
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CHAPTER 4: DUAL-RESONANCE CONTINUOUSLY

BEAM-SCANNING X-BAND REFLECTARRAY

In this chapter, a 7×7 reconfigurable reflectarray operating at X band is proposed and experimen-

tally verified. This chapter re-designs the previously presented unit cell to optimize its performance

for array dimensions. The reflectarray consists of linearly-polarized, dual-resonance, tunable unit

cells fabricated on a single layer. Reconfigurability is achieved by loading each dual-resonance

unit cell with four varactors; the two resonances provide a phase range greater than 360o. The unit

cell design utilized in this reflectarray is analyzed using full-wave floquet simulations. A biasing

network supporting individual biasing of each array element is designed, allowing beamsteering

in E-, H-, and diagonal planes. The proposed reflectarray is evaluated using both full-wave simu-

lations and measurements. To facilitate measurements, a fused filament deposition 3-D printer is

used to fabricate an antenna mounting fixture using micrometer stages to make fine adjustments

for the final alignment. A measured gain of 15.03 dBi, 3-dB gain fractional bandwidth of 7.81%,

and continuous beam scanning are demonstrated in multiple planes from -50o to +50o at 10.1 GHz.

4.1 Introduction

Reconfigurable reflectarrays have become a source of significant interest as viable replacements

for reflector antennas and phased-arrays in both wireless communications and radar applications

[86]. Reflectarrays consist of a planar array illuminated by a separate feed. Each array element

scatters the incident waves with a specific phase shift to compensate for different spatial lengths

from the feed to create coherent radiation in a desired direction. Reflectarrays tend to be lighter,

less expensive, and have lower profiles than parabolic reflectors but suffer from narrow bandwidths

[9], [96]. Several techniques have been used to improve the bandwidth of reflectarrays such as the
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use of true-time delay array elements [21], [97] or by using multiple resonators that are stacked on

separate layers [98] or arranged concentrically on a single layer [46].

Significant work has been undertaken to enable phase reconfigurability in the array elements. Com-

pared to phased arrays, reconfigurable reflectarrays avoid the need for discrete phase shifters and

expensive transmit/receive (T/R) modules by loading the array elements with tuning devices. Ad-

ditionally, the cost of development and the low efficiency due to the losses of the feeding network

of traditional phased arrays are avoided through the use of spatial feeding. Furthermore, the low

weight and ease of deployability inherent to the reflectarray design makes it ideal for space appli-

cations [99].

Several methods to enable reconfigurability in reflectarray elements have been investigated. In

[100], beam scanning was achieved by mechanically moving the feed, resulting in very limited

scan angles. Another approach involves mechanically rotating or linearly displacing the array

elements to achieve the desired reflection phase [62], [63]. This method greatly reduces the loss

of the array element while providing large phase ranges but exhibits slow scanning speed and

significantly complicates the fabrication of the array.

Alternatively, beamsteering can be realized through the use of electronically reconfigurable array

elements and many techniques and technologies to design the elements have been investigated

[86]. The technologies used to realize beam scanning can be broadly categorized as either discrete

or analog. In practical designs, discrete tuning is desirable for several reasons: discrete devices

such as micro-electro-mechanical systems (MEMS) [80] and PIN diodes [79] typically have lower

losses, stable phase states, and simple biasing networks. However, discrete tuning introduces quan-

tization errors which increase sidelobe levels (SLL) [79], [47] and reduce reflectarray directivity

[79], [23]. In [22], a 10×10 beam switching reflectarray was demonstrated utilizing MEMS tuning

devices. While this array was not capable of continuous beam scanning, it demonstrated beam
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switching in the H-plane between broadside and 40◦. Multi-bit designs can significantly reduce

quantization error but they complicate the biasing network and introduce additional loss.

Analog phase control is capable of avoiding quantization errors but accurate control of biasing

voltages is difficult. Barium Strontium Titanate (BST) [82] is continuously tunable, demonstrates

very quick tuning speeds, and is capable of high power handling. However, BST exhibits a high

loss tangent and its limited tuning range introduces additional loss in reflectarray antennas [83].

Graphene [101] and liquid crystal (LC) [102], [103] have been used to design continuously tunable

reconfigurable reflectarrays at millimeter and sub-millimeter wavelengths but are not suited to

designs at lower frequencies due to high losses [88], [89]. The array presented in [104] was tuned

by varactors and demonstrated continuous beam scanning up to 40o but suffered from poor aperture

efficiency.

The aperture efficiency of practical reconfigurable reflectarrays is typically very low. The arrays

presented in [79], [22], [89], and [104] demonstrated efficiencies of 17.9%, 7.85%, 18.5%, and

3.1%, respectively. The efficiencies of these arrays are low due to either the quantization loss or

high array element loss. The loss and phase performance of the chosen array element are the most

critical parameters for the overall array performance when utilizing analog phase control. Ideally,

the array element should exhibit a phase range of at least 360o with low loss and proper phase

slope. A limited phase range will reduce beam-scanning performance and a large phase slope will

degrade bandwidth performance. In [105], a phase-agile, dual-resonant unit cell and its equivalent

circuit were recently demonstrated. A dual-polarized version of this array element was investigated

in [95] with simulations results only.

In this chapter, a reflectarray antenna with improved electrical performance and aperture efficiency

over previously-reported varactor-based reflectarrays is designed, fabricated and measured at X

band. Although a similar array element was presented in [105], its performance was only evaluated
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at the unit cell level and was not integrated into an array. Additionally, the loss performance was

limited by the constraints of the X-band waveguide dimensions; the research presented herein

improves upon the loss and phase slope performance of such array element. Furthermore, a unique

genetic algorithm is developed to optimize individual biasing voltages for radiation in the desired

scan angle and the biasing network required to facilitate full array measurements is demonstrated.

4.2 Reflectarray Element Analysis

Figure 4.1: Schematic of the 7×7 reflectarray and its cross/ring dual-resonant array element.

In this section, the design of the dual-resonance array element is presented. The varactor-loaded

dual-resonant unit cell developed in [105] is chosen as the array element and is depicted in Fig.

4.1. The dimensions shown in 4.1 are as follows: (a = b = 13.35 mm, RW1 = 750 µm, RW2 =

375 µm, R1 = 3.5 mm, R2 = 2.78 mm, W1 = 750 µm, W2 = 2.5 mm, W3 = 375 µm, W4 = 4.4 mm,

W5 = 228 µm, W6 = 25 µm, L1 = 1.25 mm, L2 = 600 µm, L3 = 400 µm, L4 = 200 µm, Substrate

thickness h = 1524 µm). The unit cell consists of an outer ring element with a central cross element,
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each loaded with two varactors. The varactors (MACOM MA46580-1209) were chosen for their

high capacitance tuning ratio and high quality (Q) factor. The cross element has been loaded with a

mushroom structure as shown in Fig. 4.1. This mushroom structure allows for the physical spacing

between the ring and cross, R1 − R2, to be controlled without changing the resonant frequency of

the cross element. This enables control of the mutual coupling between the two elements which

is critical for the performance of the dual-resonant array element. It is important to note that the

measurements reported in [105] were based on simulations using an X-band waveguide (a = 22.86

mm, b = 10.16 mm). As such, in this work, the array element is re-designed using the inter-element

spacing in the 7×7 array.

4.2.1 Initial Design Analysis

Figure 4.2: Reflection magnitude and phase of dual-resonant unit cell shown in Fig. 4.1 when excited at

normal incidence and simulated in HFSS as the varactor capacitance is tuned.

The initial design of the array element is performed for a normal incidence angle using a parallel-

plate TEM waveguide with a fixed inter-element spacing of a = b = 13.35 mm (0.45λo) in ANSYS

High-Frequency Structure Simulator (HFSS). Rogers Duroid 6002 (εr = 2.94, tanδ = 0.0012) is
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chosen as the substrate. The array element is designed following the procedure laid out in [105]

with an operating frequency of 10.1 GHz. The reflection magnitude and phase due to excitation

from a normal incidence are shown in Fig. 4.2 for several varactor capacitances. Both resonances

are over-coupled over the entire varactor tuning range and the mutual coupling between each reso-

nance remains mostly constant. The element shows greater than 360o continuous phase range from

9.85 to 10.35 GHz with 437o phase range at the operating frequency of 10.1 GHz.

Figure 4.3: Simulated reflection magnitude and phase of the dual-resonant unit cell when excited at normal

incidence versus varactor capacitance with and without the biasing network at 10.1 GHz.

The resulting S-curves showing the variation of reflection magnitude and phase versus varactor

capacitance at 10.1 GHz are shown in Fig. 4.3. The array element loss varies from 1.45 to 3.28

dB with an average loss of 2.41 dB. This represents a 1.5- and 0.68-dB improvement in the peak

and average loss performance, respectively, as compared to the array element presented in [105].

This improvement is due in large part to the reduced dielectric constant of the substrate from 10.2

[105] to 2.94, which allows for the use of thicker substrate to achieve the same mutual coupling

level. Therefore, both ring/cross elements exhibit smaller Qrad and lower loss [105], [41]. The

higher dielectric constant in [105] was necessary due to the smaller inter-element spacing set by

the X-band waveguide. The two peaks in loss at 0.175 and 0.325 pF occur due to the ring and cross
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elements respectively, resonating at 10.1 GHz. While the maximum phase range is well over 360◦,

the phase response shown in Fig. 4.3 is also very linear from 0.2 to 0.4 pF, which will improve the

bandwidth performance.

4.2.2 Angle of Incidence

Figure 4.4: Simulated reflection magnitude and phase of the dual-resonant unit cell versus varactor capac-

itance at 10.1 GHz for varying incident angles using Floquet analysis.

In practical designs, reflectarray elements are not always excited by normal incident waves. Thus,

it is necessary to evaluate the performance of the array element when illuminated by oblique angles

of incidence. To quantify these effects, Floquet analysis is used with HFSS simulations employing

master-slave boundaries. Angles of incidence up to 40o for both TM and TE polarizations are

simulated and compared to normal incidence in Fig. 4.4. The TM and TE polarizations simulate

array elements that lie on the E- and H-planes respectively. Similar to Fig. 4.3, the increased

losses at 0.175 and 0.325 pF are due to the ring and cross elements respectively. From Fig. 4.4,

the array element performs similarly whether excited by either TM or TE waves. When the angle

of incidence is increased, the loss of the cross element increases; this increase is less than 0.3 dB
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at angles under 20◦. However, when the angle of incidence increases to 40◦, the loss of the cross

increases by 1.5 and 1 dB when excited by TE and TM waves respectively. Conversely, the loss

of the ring resonance for both TE and TM waves is less than that for TEM waves and decreases

as the angle of incidence increases. The variation of the phase response is also shown in Fig. 4.4.

The reflected phase varies very little for either illumination. Overall, incident angles up to 40o in

the H- and E-planes increase the average loss by less than 0.28 and 0.18 dB, respectively, while

causing less than 25o phase variation on average.

4.2.3 Biasing Network

The DC biasing network required by each array element must exhibit minimal effects on its re-

flection properties. While it would be desirable to design the biasing network with a quarter-

wavelength-long bias tee, the available space, especially between the ring and cross elements, is

limited. Instead, 25-µm-wide copper lines are placed at the electric field minimum (Emin) point

on both ring and cross elements. The biasing lines then connect to vias as shown in Fig. 4.1. This

allows for all biasing wires used in the array to be placed behind the ground plane, making large

array designs with individual element biasing convenient.

The Emin, points for both elements slightly change as the varactors are tuned. However, an opti-

mum choice of the Emin, points can be made to ensure minimal adverse effects from the feeding

lines [105]. The biasing lines between the ring and cross elements are meandered to move the

biasing line away from the horizontal arm of the cross denoted by W4 to avoid significantly af-

fecting the loss of the cross resonance. The biasing structure also introduces a third undesired,

under-coupled resonance. However, by moving the vias to the edge of the inter-element spacing,

thus making the biasing arms longer, the third resonance is moved out of band.

From Fig. 4.3, the worst case performance occurs at 0.4 pF where the biasing network adds 0.2-dB
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loss and causes a phase deviation of 6◦. However, on average, the biasing network introduces less

than 0.02 dB of loss and less than 4o of phase deviation.

4.3 Array Design and Dimulations

To demonstrate the effectiveness of the proposed array element, a 7×7 array is designed. The inter-

element spacing is set to 0.45 λo × 0.45 λo at the operating frequency 10.1 GHz and the aperture

is illuminated by a pyramidal X-band standard gain horn antenna with a 46 × 46 mm aperture. In

this section, the aperture efficiency and feed location will be discussed and then the reflectarray

simulation setup and results will be presented.

4.3.1 Apeture Efficiency

Figure 4.5: Calculated aperture efficiencies for varying feed horn distances with a 15-dBi gain horn offset

by 25◦.

In conventional reflectarray designs, the aperture efficiency can be optimized by choosing the

feed location relative to the dimension of the aperture f/D to balance the spillover efficiency,
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illumination efficiency, and feed blockage [106]. Compared to large reflectarrays, the effects of

feed blockage is much more pronounced on smaller designs. The small size of the array presented

here (3.15 × 3.15 λo
2) necessitates a large offset feed angle to minimize these effects. While

offsetting the feed by less than 30odoes not significantly reduce the aperture efficiency [106], it

increases the angle of incidence especially for the edge elements. Fig. 4.5 shows the illumination

and spillover efficiencies for an aperture fed by a 15-dBi horn antenna with 25ooffset angle in the E-

plane. As the feed is moved away from the aperture, each element is equally illuminated, increasing

the illumination efficiency. However, increasing the f/D decreases the spillover efficiency, which

is the ratio between the energy emitted by the feed and the energy incident on the array. The

total aperture efficiency is the product of both illumination and spillover efficiencies. To maximize

the aperture efficiency, the feed distance is chosen as f/D = 0.85. It should be noted that moving

the feed horn closer also increases the angle of incidence. The chosen feed position produces an

aperture efficiency of 74% with a maximum incidence angle of 35◦.

4.3.2 Array Analysis Using Full-Wave Simulations

The simulated 7×7 reflectarray is shown in Fig. 4.1. From array theory, the phase shift required

for each element with coordinates (m, n) to achieve a beam scan angle of (θb , φb) can be calculated

as Ineq3. For the simulation and analysis of the array, the required capacitances are extracted from

the phase curves shown in Fig. 4.3 using Ineq3. The array simulation setup in HFSS is shown

in Fig. 4.1 where finite element boundary integral (FEBI) boundary conditions are used. The use

of FEBI boundaries allows for a radiation boundary to be defined around the feed and array sep-

arately. The structures inside the FEBI boundaries are analyzed using the Finite Element Method

(FEM) while the interactions between the boundaries are analyzed using boundary integrals. This

significantly reduces the simulation complexity and computer memory requirements compared to

standard radiation boundaries.
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Figure 4.6: Normalized radiation patterns in three planes simulated in HFSS. The co- and cross-polarization

patterns are represented by solid and dashed lines respectively.

Fig. 4.6 shows the normalized radiation patterns for the boresight case in three planes: the E-, H-,

and a diagonal plane where φ = 45◦. The sidelobes in all three planes are below -15 dB with the

exception of a peak in the E-plane at 90◦. The cross-polarization patterns peak at boresight in all

three planes with similarly-shaped lobes. All cross-polarization levels are below -21 dB relative

to the main beams. Figs. 4.7, 4.8 and 4.9 show the normalized radiation patterns for H-plane,

diagonal plane, and E-plane, respectively, when the beam is scanned up to +50◦. Scanning to

negative angles in the H-plane is not shown as the array is symmetric in this plane. The beam

cannot be scanned to negative angles in the E-plane due to the feed blockage.
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Figure 4.7: Normalized H-Plane radiation patterns for different scan angles using HFSS simulations.

Figure 4.8: Normalized Diagonal (φ = 45◦) plane radiation patterns for different scan angles using HFSS

simulations.
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Figure 4.9: Normalized E-plane radiation patterns for different scan angles using HFSS simulations.

In Fig. 4.7, SLLs are more than 12 dB below the main beam in all scan cases while the SSLs

slightly increase as the beam is scanned to large angles. As the beam is scanned to large angles,

the half power beam width (HPBW) increases and the main beam suffers from scan loss. For the

maximum scan angle of 50◦, the scan loss is 2.46 dB. In Fig. 4.8, the effects of the feed image

lobe from the ground plane can be observed when the beam is scanned to 20◦. The HPBW is

wider when scanned to 50oin the diagonal plane than when scanned to 50oin the H-plane. While

the sidelobes of the radiation pattern in the E-plane are all more than 12 dB below the main beam,

they are also higher on average than in either H- or diagonal planes.

4.4 Fabrication and Measurements

4.4.1 Fabrication Procedure and Measurement Setup

Due to the limited size of the photolithography equipment, the 7×7 reflectarray is fabricated in sev-

eral 3×3 sub-arrays. First, the original copper cladding on one side of the substrate is etched away
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before using electron-beam (E-Beam) deposition to evaporate a copper seed layer. Photolithog-

raphy is then used to define the array element and its biasing network on one layer. Then pulsed

electroplating is used to grow 10 µm of copper. The seed layer is then etched away; the substrate

is diced; and the varactors and biasing wires are soldered on. Once the biasing wires are soldered,

the array is mounted on a test fixture.

Figure 4.10: Fabricated 7×7 reflectarray and measurement setup showing the feed, supporting structures

and biasing

The measurement setup including the array, feed, biasing lines, and the support structures are

shown in Fig. 4.10. All the supporting structures used in the measurement setup are fabricated

by a 3D printer using polylactic acid (PLA). Solid PLA has been reported to possess a dielectric

constant of 2.3 [107]. However, the dielectric constant of structures made of PLA will heavily

depend on the density of the structure as most 3D printed parts are partially hollow. As shown

in Fig. 4.10, the feed horn is rigidly fixed to the measurement structure to ensure a consistent

offset angle. To enable the accurate positioning of the reflectarray aperture relative to the feed,

the array mounting structure is attached to three linear micrometers. These micrometers allow for

±13 mm travel with a 400 µm/turn resolution. The biasing voltages are provided by seven 10-bit,
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8-channel DAC modules mounted behind the reflectarray as shown in Fig. 4.10. Each module uses

a MAX5592 DAC in conjunction with a DC amplifier to generate up to 20 volts to bias each array

element. A standard anechoic chamber using a far-field setup is used to measure the reflectarray.

4.4.2 Genetic Algorithm

One of the major challenges to use array elements with analog phase control is finding the optimal

voltages to achieve maximum gain in the desired direction. Using the extracted reflection phase

from Fig. 4.3 and the required phases calculated from Ineq3, it is possible to calculate the required

capacitances and therefore voltages for each array element. However, due to fabrication tolerances,

non-uniform varactors and potential alignment issues, the calculated voltages might not be the

exact optimal values. A custom genetic algorithm (GA) was used to solve for the optimal bias

voltages that result in maximum gain in any desired direction.

The genetic algorithm uses a population of individuals where each individual consists of 49 volt-

ages. In each generation, all of the individuals in the population are tested and evaluated by mea-

suring the gain. The lowest scoring 40% of the population is replaced by a random set of voltages;

the highest scoring 2% of the population are directly copied over to the next generation; the re-

maining 58% of the population reproduce and combine in a controlled manner as shown in Fig.

4.11. When two individuals breed, some of the voltages from each individual will be directly trans-

ferred to each child while some voltages will crossover between the two parents. In addition, there

is a chance for random mutation of any of the voltages. This algorithm is only capable of searching

for a voltage set which results in the peak gain at a single direction, and a single frequency due to

the time it would take to mechanically measure multiple scan angles. However, it was found that

this resulted in maximum gain and good radiation patterns.
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Figure 4.11: Breeding between individuals in each generation of the genetic algorithm.

4.4.3 Measurement Results

Figs. 4.12, 4.13 and 4.14 show the measured radiation patterns for multiple scan angles in the H-,

φ = 45◦, and E-planes, respectively.
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Figure 4.12: Measured H-Plane radiation patterns for different scan angles.

Figure 4.13: Measured Diagonal (φ = 45◦) plane radiation patterns for different scan angles.
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Figure 4.14: Measured E-plane radiation patterns for different scan angles

From Fig. 4.12 it can be seen that the array is capable of beamsteering in the H-plane from -50o

to +50o where the scan loss is 2.44 and 2.15 dB, respectively. The worst-case SLL is -10.1 dB

and occurs when the beam is pointed to -50◦. When scanning in the φ = 45o plane, the SLLs are

better than -15 dB. Due to a slight occlusion caused by the feed horn in the negative theta, the

beamsteering range in the φ = 45o plane is slightly lower than in the H-plane and is scanned from

-40o to +50◦. Similar to the H-plane case, the worst-case SLL occurs when the beam is scanned to

extreme angles and is -7.9 dB when scanned to -40◦. However, for all other scan cases the SLLs

are better than -10 dB. In Fig. 4.14 the beam is scanned from 0o to +50◦. The beam cannot be

scanned to negative angles due to the feed blockage. The scan loss and worst-case SLL at +50o is

1.73 and -10.3 dB respectively. In all other scan cases, the SLL is less than -11 dB relative to the

main beam.
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Figure 4.15: Measured radiation patterns in three planes when the main beam is scanned to the boresight.

The co- and cross-polarization patterns are represented by solid and dashed lines respectively.

Fig. 4.15 shows the measured co-polarization and cross-polarization radiation patterns for the

boresight scan case in all three planes. As expected, a consistent beam width is observed in each

plane. The worst-case SLL of -12.7 dB occurs in the E-plane. The worst-case cross-polarization

levels occur in the diagonal plane and is -17.4 dB. The peak cross-polarization level in the E-plane

is -20.4 dB and occurs at 30oinstead of boresight. The cross-polarization levels increase as the

beam is scanned to large angles; the cross-polarization levels are below -16 dB for all scan cases

and are not shown here for the sake of brevity.
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Figure 4.16: Measured radiation patterns in three planes when the main beam is scanned to the boresight.

The co- and cross-polarization patterns are represented by solid and dashed lines respectively.

Fig. 4.16 shows the variation of simulated and measured array gain with frequency for the bore-

sight scanning case. The measured gain agrees very well with simulations around the operating

frequency. The simulated and measured peak gain is 15.27 and 15.03 dB at 10.1 and 10.05 GHz

respectively.

η =
G

4πAλ2
(4.1)

Using the same definition as in [79], the maximum measured total efficiency is 25.42% calculated

from 4.1 where A is the aperture area and G is the measured gain The measured 1- and 3-dB gain

bandwidths are 4.4% and 7.81% respectively.

Table 4.1 lists the loss budget for the boresight beam at 10.1 GHz. The array element loss varies as

the varactors are tuned, as such the average element loss will vary when the beam is scanned. The

average element loss in Table 4.1 is calculated based on the reflected phases calculated by Ineq3

for the boresight case. The relationship between the loss and phase is shown in Fig. 4.3. It should

be noted that the difference between measured and calculated losses is due to a few factors: (1) the
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Table 4.1: Loss Budget of the Array for the Boresight Case

Directivity (Calculated) 20.96 dBi
Aperture Efficiency (Calculated) 74% (-1.31 dB)

Average Element Loss (Calculated) 2.62 dB
Total Calculated Losses 3.93 dB

Gain (Measured) 15.03 dBi
Measured Losses (Directivity - Gain) 5.96 dB

Total Efficiency 25.42%
Measured - Calculated Losses 2.03 dB

calculated loss does not consider feed blockage; (2) the calculated loss uses the average element

loss while the measurement/HFSS exhibits different losses in each element; (3) the calculated loss

does not take into account the effect from angle of incidence.

Table 4.2: Comparison of Relevant Designs

This Design [82] [84] [72] [93]
Tuning Technology Varactor PIN Diode MEMS Varactor Varactor
Beamsteering Type Continuous Continuous Digital Continuous Continuous

Beamsteering Capabilities 2-D 1-D 1-D 1-D 1-D
Center frequency. 10.1 GHz 12.5 GHz 26.5 GHz 11.25 GHz 5.8 GHz

Gain 15.01 dBi 17.5 dBi 11.42 dBi 9.30 dBi 12.9
Aperture Size (λo

2) 3.15×3.15 5×5 5×5 2.1×10.5 5.8×4.06
Total Efficiency 25.42% 17.9% 7.85% 3.1% 5%

Gain FBW (3-dB) 7.81% N/A 3.77% <7% 1.3%
First SLL -10.1 dB -5.9 dB -10 dB -7 dB -10 dB

Beamsteering Range ±50◦ ±50◦ 0◦or 40◦ ±40◦ ±50◦

The measured performance of the array presented in this work is compared to other reconfigurable

reflectarray designs in Table 4.2. The total efficiency and SLL of this design compare favorably

with the discretely-tuned arrays [79], [22]. The beamsteering range demonstrated in this work

is comparable or better than both designs which is impressive considering that they are larger.

While the significantly-lower aperture efficiency in [104] and [61] is mainly due to non-ideal feed

placement, the array elements used in both designs exhibit higher losses and have a phase range

less than 360◦, causing phase errors and higher SLLs.
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4.5 Discussion

A 7×7 reconfigurable reflectarray antenna has been designed, simulated, fabricated and measured

at X band. The reflectarray was configured to enable continuous scanning in any desired plane

utilizing array elements capable of a phase range in excess of 360o with independent biasing. A

genetic algorithm capable of finding the optimal biasing voltages to obtain maximum gain in any

arbitrary direction was developed. Continuous beamsteering was demonstrated from -50o to +50o

in the H-plane while beamsteering was -40o to +50oin the φ = 45o plane. Beamsteering was limited

0o to +50o in the E-plane due to feed blockage. A broadside gain of 15.03 dBi, a 4.41% 1-dB and

a 7.81% 3-dB gain bandwidth was measured.

This reflectarray demonstrates the advantages of dual-resonant microstrip array elements in both

reducing the element loss and improving the bandwidth of reconfigurable reflectarrays while pro-

viding full phase range. Future work includes studying and the fabrication sensitivities, increasing

the speed of the DACs used in the biasing network and optimizing the genetic algorithm to reduce

the time required to converge on the optimal biasing voltages. While the current biasing scheme

works well in this case, when the size of the array increases the time required to optimize the bias-

ing voltages will increase exponentially. In the next chapter the realization of a dual-polarization

array element will be presented. Additionally, the equivalent circuit will be used to optimize the

loss performance using circuit analysis.
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CHAPTER 5: LOSS OPTIMIZATION AND DUAL-POLARIZATION

STUDIES

In the previous chapter a reconfigurable array was designed, fabricated, and measured. In this chap-

ter the equivalent circuit of the dual-resonance unit cell is used to evaluate loss mechanisms and

to optimize the loss performance. To further extend this design, a dual-resonance dual-polarized

array element is presented. Enabling two linear polarizations to operate simultaneously in the

reflectarray not only adds polarization diversity but also increases the reflectarray’s data capacity.

5.1 Dual Resonant Array Element Loss Optimization

Reconfigurable reflectarrays combine the advantages of traditional phased arrays and reflector an-

tennas: spatial feeding, planar design, low fabrication costs, and high gain. Reflectarrays avoid

the lossy and costly beamforming networks required to feed phased arrays and their planar design

makes the fabrication much more cost effective than non-planar antennas.

Ideally, reflectarray elements should have low loss and be capable of at least 360◦phase range to

avoid phase errors. A dual-resonant design is required in order to achieve a phase range greater than

360◦and offers shallower phase slopes which improve bandwidth performance. In this section a

phase-agile dual-resonance array element is presented and an equivalent circuit is used to optimize

the loss performance of the array element while maintaining a phase range greater than 360◦.
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5.1.1 Base Dual-Resonance Design

In Fig. 3.1, the proposed dual-resonance reflectarray element operating at X band is presented.

The dimensions of the element are as follows: RW = 325 µm, R1 = 1.83 mm, R2 = 2 mm, W1

= 500 µm, W2 = 1.3 mm, W3 = 250 µm, W4 = 2.4 mm, W5 = 228 µm, L1= 600 µm, L2 = 600

µm, L3= 400 µm, L4 = 200 µm, L5 = 3.153 mm, Substrate thickness h = 1270 µm. The element

consists of two resonating bodies: an internal cross and an external ring element, both of which

are loaded with two varactors (MACOM MA46580-1209); the varactors were chosen for their

high capacitance tuning ratio and high quality (Q) factor. Rogers Duroid 6010 (εr =10.2, tanδ =

0.0023) was chosen for the substrate for its low loss tangent. The element is designed in an X-band

waveguide (a = 22.86 mm, b = 10.16 mm) to simulate the effects of mutual coupling in an infinite

array.

The design procedure for the dual-resonant array element is similar to the procedure presented in

[108]. First, the cross and ring elements are designed separately. Both elements are designed to

operate at approximately 10 GHz when simulated in isolation and have similar frequency tuning

ranges when the varactors are tuned from 0.15 to 0.4 pF. Both elements are tuned such that their

resonances are over-coupled for the entire frequency tuning range. The array element operates at

10.3 GHz, with a peak and average loss of 5.51 and 2.44 dB respectively, with a phase range of

428◦in both cases.
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5.1.2 Loss Optimization Procedure

Figure 5.1: Analysis of the sources of loss in the Dual-Resonance unit cell

To aid in the optimization of the loss of the array element, an equivalent circuit was developed

and is shown in Fig. 3.2. Both the ring and cross elements are represented by parallel RLC net-

works loaded with two varactors. The inductive π-networks LRingExt. and LCrossExt. represent the

external coupling corresponding to incident waves from the waveguide into the ring and cross ele-

ments, respectively. The mutual coupling between the two elements is represented by a capacitive

π-network. This equivalent circuit models the electrical performance of the unit cell in Fig. 3.1

and does not represent the physical model. First, the L,C, and CV ar values are found by matching

the resonant frequency and frequency tuning range of the ring/cross in ANSYS High Frequency

Structure Simulator (HFSS) where the ring/cross are simulated in isolation. Then the LExt and R

values are set by matching the loss and phase slope at the resonant frequency. CMut is set to match

the HFSS simulation results when the antenna elements are combined.

To optimize the loss of the unit cell, the sources of loss need to be considered. Fig. 5.1 demon-

strates the major sources of loss. It can be seen that the varactor loss dominates the unit cell due

to the intrinsic quality factor of the varactor and cannot be improved. The second major source of
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loss comes from the external coupling levels but the greatest effect of the mutual coupling is on the

frequency separation between the ring and cross resonances. As demonstrated in [108] this sepa-

ration must be less than the frequency tuning range which is primarily limited by the tuning range

of the varactors. From the equivalent circuit, Rc and Rr represent the loss due to the conductor and

dielectric for the cross and ring elements, respectively. As can be seen in Fig. 5.1 these losses are

a small portion of the overall loss. Copper is used for the conductor and the dielectric has a very

low loss tangent. The loss and phase performance is evaluated at the center frequency 10.3 GHz

as the varactors are tuned.

Figure 5.2: Phase range, average, and peak loss at 10.3 GHz as the cross element’s external coupling is

varied.
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Figure 5.3: Phase range, average, and peak loss at 10.3 GHz as the ring element’s external coupling is

varied.

Fig. 5.2 shows that the external coupling of the cross has little effect on the average loss of the

array element. However, reducing LCross Ext. bellow 1.2 nH under-couples one of the resonances,

reducing the phase range below 360◦. From Fig. 5.3 it is seen that the loss performance of the

array element is much more sensitive to the external-coupling of the ring than the cross element.

When LRingExt. is increased to 1.8 nH, one of the resonances becomes under-coupled, causing

a significant decrease in phase range. Tuning both LRingExt. and LCrossExt., to 0.764 and 1.83

nH, the peak and average loss are optimized and reduced to 2.29 and 1.96 dB, respectively, while

maintaining a 360.6◦phase range.
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Figure 5.4: Phase range, average, and peak loss at 10.3 GHz as the mutual coupling is varied.

The design of a phase-agile dual-resonant reflectarray element was presented and an equivalent

circuit was used to design an array element operating at 10.3 GHz with 360.6◦phase range while

reducing the peak and average loss by 3.22 and 0.48 dB, respectively. The equivalent circuit

component values for both ring and cross elements provide guidelines for the design of a physical

unit cell in HFSS.

5.2 Dual-Polarization In Reflectarrays

Reflectarray elements should ideally have low loss, at least 360◦phase range to avoid phase errors,

and a low phase slope with respect to frequency to improve antenna bandwidth. In the design

presented in this section the previously presented dual resonant array element is redesigned to

support two linear polarizations.
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Figure 5.5: Dual polarized, dual resonant element with varactors.

In Fig. 5.5, the proposed dual-resonance reflectarray element operating at X band is presented.

The element consists of two resonating bodies that are reconfigurable and symmetric to enable

dual linear polarizations. The dimensions are as follows L1 = 3.14 mm, W1 = 650 µm, L2 = 400

µm, W2 = 200 µm, W3 = 300 µm, RW = 550 µm, R = 1.63 mm.

5.2.1 Enabling Dual-Polarization in Dual-Resonant Array Element

In the design of the proposed dual-polarized, dual-resonance reflectarray element, the interior cross

element and the exterior ring element were first designed separately. Each element was designed

to operate at approximately 10 GHz and support vertical and horizontal polarizations with better

than 30 dB cross-polarization levels. To minimize the complexity of the biasing network, all eight

varactors are biased with the same DC voltage. However, both resonating elements need to have

similar frequency tuning ranges. If the resonant frequency of one of the elements changes more
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than the other element with the same change in capacitance, the mutual coupling between them

will change, affecting loss and phase performance.

Figure 5.6: Phase range, average, and peak loss at 10.3 GHz as the mutual coupling is varied.

Figure 5.7: Phase range, average, and peak loss at 10.3 GHz as the mutual coupling is varied.

As discussed in [91], for dual-resonance reflectarray elements to have a phase range greater than

360◦, two main conditions must be met: (1) both resonances must be over-coupled at and below

the operational frequency, and (2) the frequency tuning range of the element must be greater than
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or equal to the frequency separation between the two resonances. For this discussion, the initial

resonant frequencies are labeled f1 and f2 while the tuned frequencies are labeled f ′1 and f ′2 as

shown in Fig. 5.6. When both resonances are over-coupled, they each demonstrate a 360◦phase

range. If f ′1 is greater than f2, the region between f2 and f ′1 will have a phase range in excess

of 360◦. However, if either resonance is under-coupled, it will demonstrate an irregular phase

response and the overall phase contribution of that resonance will be 0◦as shown in Fig. 5.7. The

under-coupled response demonstrated in Fig. 5.7 limits the frequencies in which the desired phase

response can be achieved. However, because this irregular phase response is present above f ′1, the

frequencies between f ′1 and f2 still provide a continuous phase response greater than 360◦.

Fig. 5.5 shows dimensions W2 and L2 which are used in conjunction with L1 to adjust the phys-

ical length of the inner resonating body while maintaining its resonant frequency. By adjusting

the physical length of the cross element, the mutual coupling between the two elements can be

controlled, which is critical to control the loss and phase characteristics.

5.2.2 Simulation Results

Figure 5.8: Phase range, average, and peak loss at 10.3 GHz as the mutual coupling is varied.
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Fig. 5.6 shows the reflection coefficient for the proposed unit cell as the varactors are tuned from

0.7–0.15 pF. The loss and phase performance of the array element is identical for both vertical

and horizontal polarizations. When the varactor capacitance loading is maximum, f2 is more over-

coupled than f1. However, as the capacitance decreases, this relationship is inverted. The element

operating frequency is coincident with f2, and as such the mutual coupling is increased until the

ring resonance f1 reaches critical coupling. This is done to make the upper resonance more over-

coupled, reducing the un-tuned initial loss and phase sensitivity. As the varactors are tuned, f2

becomes more under-coupled and its loss increases; this is caused by the unequal frequency tuning

range of the two resonating elements. As the capacitance is decreased, the unloaded resonant

frequency of the ring begins to increase past that of the cross element, which leads to a reduction

in the mutual coupling between the two resonances.

Fig. 5.8 shows the loss and phase response at the operating frequency of 9.9 GHz. The large losses

at 0.7 pF and 0.3 pF are caused by the resonance of the cross and ring elements, respectively. Due

to the reduction in the coupling between the elements, the loss of the ring element loss is reduced

from 24 to 3.5 dB when resonant frequency of the ring element is tuned to 9.9 GHz. The peak loss

of 4.9 dB arises from the cross element resonance, however the average loss across the varactor

tuning range is only 2.7 dB. The phase response is smooth and linear from 0.7 pF to 0.4 pF and

the phase range is 445◦; since only 360◦of phase tuning is required, the peak loss can be reduced

to 3.5 dB if the element is operated from 0.6 to 0.15 pF.

The design of a phase-agile, dual resonant reflectarray element supporting both vertical and hori-

zontal polarizations with better than 30 dB cross polarization levels is presented. The array element

operates at 9.9 GHz and provides 445◦of continuous phase range with a peak and average element

loss of 4.9 dB and 2.7 dB, respectively. If the utilized phase range is reduced to 360◦the peak loss

can be reduced to 3.5 dB.
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CHAPTER 6: SUMMARY AND FUTURE WORK

6.1 Summary

This dissertation covers the design concepts of reconfigurable reflectarrays based on dual-resonance

array elements and their advantages over single resonance array elements. The array performance

of the dual-resonant element and its suitability for integration into large arrays is also covered. The

optimization of this design via an equivalent circuit and the extension to dual-polarized applica-

tions is also presented.

In chapter 2 a single resonant reflectarray loaded with BST is used to design fabricate, and measure

a reconfigurable reflectarray at Ka band. The reflectarray demonstrated continuous beam-scanning

from boresight to +25o in the E-plane. However the use of column biasing and the limited phase

range increased the side-lobe levels and introduced a feed-image lobe. This design was extended

to V band were and interdigitaged gap structure was used to optimize the phase range of the array

element. However the phase range was still less than 360o. A BST-integrated dual-resonant design

was then introduced. The use of two resonances allowed the element to achieve a phase range

greater than 360o. However, due to the limited tuning range of BST the losses were still high.

In chapter 3 an equivalent circuit was developed to describe dual-resonant reflectarray elements,

then the operational theory behind them was fully explained. Next the design procedure for a

cross/ring dual resonant array element was presented. A novel biasing structure was developed

to operate in the minimal space between the two resonant structures without significantly affect-

ing their performance. The array element was designed for waveguide measurements, fabricated

and measured. The array element demonstrated 375o of phase range. Furthermore the loss and

bandwidth performance of the array element was also significantly improved as compared to the
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designs presented in chapter 2.

In chapter 4 the dual-resonant unit cell was redesigned for array spacing and the loss performance

was further improved. The peak loss was reduced by 1.5 dB as compared to the element presented

in chapter 3 while maintaining a phase range significantly larger than 360 o. Additionally, a novel

genetic algorithm is developed to optimize array biasing voltages.

In chapter 5 a theoretical method of optimizing the loss performance of dual-resonant elements is

presented using an equivalent circuit. After this the dual-resonant element is extended to support

two linear polarizations.

6.2 Future Work

The reconfigurable reflectarray designs presented in this work have demonstrated a significant im-

provement on the state of the art and with further refinement could be integrated into the next

generation beam-scanning antenna systems. Potential extensions of this work include improve-

ments and modifications to the array element to increase the frequency of operation, increase the

polarization diversity, and improve the array’s mechanical properties.

While the dual-resonance array element has demonstrated a significant improvement in the band-

wdith performance of single-resonance reconfigurable reflectarrays previously demonstrated, it is

still possible to improve the performance even further. In [102] an array element utilizing three

coupled resonances was demonstrated. Unfortunatley the demonstrated bandwidth was 6%, lower

than the bandwdith presented in chapter 4. However, in theory this approach can be used to further

increase the range of the linear phase range, improving the bandwidth further.

Varactors were used to realize the dual-resonant array at X band due to the limited tuning range
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of BST. However, the loss of varactors increase significantly at higher frequencies and they aren’t

suitable for mm-wave applications. However, the dual-resonant operational theory presented in

chapter 3 is applicable to any dual-resonant design regardless of the tuning technology utilized.

Low loss MEMS capacitors are a promising candidate for higher frequency applications. Alter-

natively, research into manganese doped BST has reported exciting improvements into both the

tuning range of BST and its losses [109]. Due to its monolithic integration, with the improvement

of its tuning range and loss performance, BST would be a viable material for use in dual-resonant

designs at mm-wave frequencies and higher.

Deployability is a desirable property for reflectarrays, especially those used in extraterrestrial appli-

cations. However, designing deployable reconfigurable reflectarrays is very difficult as the tuning

elements can be fragile, requiring special care to avoid damage. Research into realizing flexible

BST-integrated varactors was presented in [87]. Copper interdigitaged capacitors were integrated

with BST on a silicon wafer before being bonded to a liquid crystal polymer (LCP) substrate. Af-

ter this the silicon wafer was etched away realizing flexible, tunable varactors. Applying this same

technique to the reflectarray design presented in chapter 4 would be challenging, as fine control

over the substrate thickness is required to achieve the correct levels of mutual and external cou-

pling. However, with this technique an entire reflectarray aperture could be rolled up, and then

later deployed.

A desirable property in antenna design is polarization flexibility. Some work has been done on

reconfigurable reflectarrays to support multiple linear polarizations as well as circular polariza-

tion [110], [111]. However, such works are limited and none of them offer continuous phase

ranges greater than 360o. An extension of the dual-polarization, dual-resonance design presented

in chapter 5 would be to study its suitability for circular polarization. However, it will be a design

challange to achieve a large axial bandwidth.
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