17 research outputs found

    The extraordinary evolutionary history of the reticuloendotheliosis viruses

    Get PDF
    The reticuloendotheliosis viruses (REVs) comprise several closely related amphotropic retroviruses isolated from birds. These viruses exhibit several highly unusual characteristics that have not so far been adequately explained, including their extremely close relationship to mammalian retroviruses, and their presence as endogenous sequences within the genomes of certain large DNA viruses. We present evidence for an iatrogenic origin of REVs that accounts for these phenomena. Firstly, we identify endogenous retroviral fossils in mammalian genomes that share a unique recombinant structure with REVs—unequivocally demonstrating that REVs derive directly from mammalian retroviruses. Secondly, through sequencing of archived REV isolates, we confirm that contaminated Plasmodium lophurae stocks have been the source of multiple REV outbreaks in experimentally infected birds. Finally, we show that both phylogenetic and historical evidence support a scenario wherein REVs originated as mammalian retroviruses that were accidentally introduced into avian hosts in the late 1930s, during experimental studies of P. lophurae, and subsequently integrated into the fowlpox virus (FWPV) and gallid herpesvirus type 2 (GHV-2) genomes, generating recombinant DNA viruses that now circulate in wild birds and poultry. Our findings provide a novel perspective on the origin and evolution of REV, and indicate that horizontal gene transfer between virus families can expand the impact of iatrogenic transmission events

    Visualisation and characterisation of mononuclear phagocytes in the chicken respiratory tract using CSF1R-transgenic chickens

    Get PDF
    Additional file 2. Location of B cells, T cells and follicular dendritic cells (FDC) in the lung of MacReporter chickens. The BALT region of 5 to 7 week old non-vaccination animals were analysed for B, T and FCD cells. Isotype controls were used to standardise the microscope and examine aspecific binding before acquiring images (A-B). The GC of MacReporter animals are tightly packed with Bu1-CSF1R-eGFP+ FDC cells and Bu1+CSF1R-eGFP- B cells (C) with few Bu1+ B cells found in the parabronchi (F). CD3+ T cells are disperse within and outside the GC (D) and parabronchi (G). CSF1R-eGFP+ FDC cells express Fc receptors and trap immunoglobulin by expressing IgY (E) and CSF1R-eGFP+ IgY+ FDC are rarely detected out with the GC, BALT region of the lung. GC are indicated by white dashed lines

    Visualizing the Human Subcortex Using Ultra-high Field Magnetic Resonance Imaging

    Get PDF

    Lead Exposure from Backyard Chicken Eggs: A Public Health Risk?

    No full text
    Although the USA has made significant strides in reducing lead exposure, new and emerging sources are raising cause for public concern. Recent reports of finding lead in eggs from chickens raised in urban gardens has highlighted the need to consider the potential health risks of consuming eggs from backyard chickens. Following the detection of 0.33 μg/g lead in the edible portion of eggs submitted for lead analysis from a backyard chicken owner, further investigation was conducted to determine the source and extent of lead exposure in the flock. Several birds, almost two dozen eggs, and environmental samples were submitted to the California Animal Health and Food Safety Laboratory for further testing. Lead was detected in the blood, liver, kidney, and bone at varying concentrations in all birds but was not detected in the muscle tissue. All egg shells contained detectable amounts of lead, while only a little over half of the edible portion of the eggs contained lead. The detected concentrations in the edible portion approached or exceeded the recommended threshold of lead consumption per day that should not be exceeded by young children if a child consumed one average-sized egg. Peeling paint from a wooded structure adjacent to the flock’s coop was the likely lead source containing 3,700 μg/g lead. Thus, removal of the chickens from the source and periodic testing of eggs for lead were recommended. This case illustrates the need for consumers and health care workers to be aware of potential sources for lead exposure such as backyard chickens
    corecore